
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/194335

 

 

 

Please be advised that this information was generated on 2023-04-13 and may be subject to

change.

http://hdl.handle.net/2066/194335


Genetic biomarkers for 

precision medicine in age-related 

macular degeneration

laura lorés de motta





Laura Lorés de Motta

Genetic biomarkers for precision medicine  
in age-related macular degeneration 



This project has received funding from the European Union’s Seventh Framework 

Programme for research, technological development and demonstration under grant 

agreement no 317472 (EyeTN).

The work presented in this thesis was carried out within the Radboud Institute for 

Molecular Life Sciences. 

The publication of this thesis was financially supported by the Radboud University 

Nijmegen, Stichting Blindenhulp and Rotterdamse Stichting Blindenbelangen.

ISBN/EAN  978-94-028-1120-9

Cover: Kyah ter Haar Romeny, Proefschriftenbalie

Lay-out: michel wolf, Proefschriftenbalie

Print: Ipskamp Printing

                     Laura Lorés de Motta, 2018

No part of this book may be reproduced or transmitted, in any form or by any means, 

without written permission of the publisher holding the copyright of the published articles.

Except for the published articles, parts of this book may copied, distributed, displayed 

and derivative works and remixes based on it may be made only if they give the author 

the credits and only for non-commercial purposes.



Genetic biomarkers for precision medicine in 

age-related macular degeneration

Proefschrift

ter verkrijging van de graad van doctor

aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,

volgens besluit van het college van decanen

in het openbaar te verdedigen op maandag 17 september 2018

om 12:30 uur precies

door

Laura Lorés de Motta 

geboren op 10 april 1990

te Huesca, Spanje



Promotoren
Prof. dr. Anneke I. den Hollander 

Prof. dr. Carel B. Hoyng  

Copromotor
Dr. Eiko K. de Jong 

Manuscriptcommissie
Prof. dr. Alain J. van Gool 

Dr. Tessel E. Galesloot 

Prof. dr. Andrew Webster (University College London, Verenigd Koninkrijk) 

Paranimfen
Julio César Corral Serrano

Riccardo Sangermano

Roos L. Schellevis



Genetic biomarkers for precision medicine in 

age-related macular degeneration

Doctoral Thesis

to obtain the degree of doctor 

from Radboud University Nijmegen 

on the authority of the Rector Magnificus prof. dr. J.H.J.M. van Krieken,  

according to the decision of the Council of Deans 

to be defended in public on Monday, September 17, 2018 

at 12:30 hours 

by

Laura Lorés de Motta 

born on April 10, 1990

in Huesca, Spain



Supervisors
Prof. dr. Anneke I. den Hollander 

Prof. dr. Carel B. Hoyng  

Co-supervisor
Dr. Eiko K. de Jong 

Doctoral Thesis Committee 
Prof. dr. Alain J. van Gool 

Dr. Tessel E. Galesloot 

Prof. dr. Andrew Webster (University College London, United Kingdom) 

Paranymphs
Julio César Corral Serrano

Riccardo Sangermano

Roos L. Schellevis



A mis abuelos





Contents

 List of abbreviations 11

1 Introduction 15

  Adapted from “Exploring the use of molecular biomarkers for precision  

medicine in age-related macular degeneration”

 Molecular Diagnosis and Therapy, 2018 June; 22(3):315-343

2 Genetic biomarkers for anti-VEGF therapy 39

 2.1 A genetic variant in NRP1 is associated with worse response to ranibizumab  

   treatment in neovascular age-related macular degeneration 41

        Pharmacogenetics and Genomics, 2016 January; 26:20-27 
 

 2.2  GWAS study using DNA pooling strategy identifies association of variant  

rs4910623 in OR52B4 gene with anti-VEGF treatment response in   

age-related macular degeneration 61

   Scientific Reports, 2016 November; 6:37924
 

 2.3  Rare variants in C10ORF88 and UNC93B1 are associated with response   

to anti-VEGF therapy in age-related macular degeneration 83

    Published as “Association of genetic variants with response to anti-vascular  

endothelial growth factor therapy in age-related macular degeneration”  

JAMA Ophthalmology, 2018 May; Epub ahead of print 

3 Genetic biomarkers for complement inhibiting therapies 109

 3.1  GWAS reveals genetic variants in CFH and CFHR4 associated with   

systemic complement activation levels: implications for age-related   

macular degeneration 111

   Ophthalmology, 2018 July; 125(7):1064-1074
 

 3.2 Complement factor H related 4 and age-related macular degeneration 137

   In preparation

4 General discussion 161

  Adapted from “Exploring the use of molecular biomarkers for precision  

medicine in age-related macular degeneration”

 Molecular Diagnosis and Therapy, 2018 June; 22(3):315-343

5 Summary / Samenvatting / Resumen 193

6 Acknowledgements 201

7 List of publications 205

8 Radboud Institute for Molecular Life Sciences (RIMLS) portfolio 207





 11

List of abbreviations

Genes and proteins
ABCA1 ATP-binding cassette subfamily A member 1 

ACAD10 Acyl-CoA dehydrogenase family member 10 

ACADSB Acyl-coenzyme A dehydrogenase, short/branched chain 

ADAMTS9-AS2 ADAM metallopeptidase with thrombospondin type 1 motif 9 antisense RNA 2 

APOE Apolipoprotein E 

ARHGAP21 Rho GTPase activating protein 21 

ARMS2 Age-related maculopathy susceptibility 2 

B3GALTL Beta 3-glucosyltransferase 

C10orf88 Chromosome 10 open reading frame 88 

C2 Complement component 2 

C20orf85 Chromosome 20 open reading frame 85 

C3 Complement component 3

C5 Complement component 5

C9 Complement component 9 

CCT3 Chaperonin containing TCP1 subunit 3 

CD63 CD63 molecule 

CETP Cholesterylester transfer protein 

CFB Complement factor B 

CFD Complement factor D

CFH Complement factor H 

CFHL-1 Complement factor H-like protein 1 

CFHR4 Complement factor H related 4

CFI Complement factor I

CNN2 Calponin 2 

COL10A1 Collagen type X alpha 1 chain 

COL4A3 Collagen type IV alpha 3 chain 

COL8A1 Collagen type VIII alpha 1 chain 

CTRB1 Chymotrypsinogen B1 

CTRB2 Chymotrypsinogen B2

CXCL8 C-X-C motif chemokine ligand 8 

FBN2 Fibrillin 2 

HIF1A Hypoxia inducible factor 1 alpha subunit

HTRA1 HtrA serine peptidase 1 

IL-6 Interleukin 6 

KCNT2  Potassium sodium-activated channel subfamily T member 2 

KMT2E Lysine methyltransferase 2E 

LIPC Lipase C, hepatic type

MAC-IP Membrane attack complex inhibitory protein

MIR6130 MicroRNA 6130 

MMP9 Matrix metalloproteinase 9 
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NPLOC4 NPL4 homolog, ubiquitin recognition factor 

NRP1 Neuropilin 1 

PEDF Pigment epithelium-derived factor

PGF Placental growth factor

PILRA Paired immunoglobin like type 2 receptor alpha 

PILRB Paired immunoglobin like type 2 receptor beta

PLA2G12A Phospholipase A2 group XIIA 

PRLR Prolactin receptor 

RAD51B RAD51 paralog B 

RDH5 Retinol dehydrogenase 5 

RORB RAR related orphan receptor B 

SERPINF1 Serpin family F member 1 

SKIV2L Ski2 like RNA helicase 

SLC16A8 Solute carrier family 16 member 8 

SPEF2 Sperm flagellar 2 

SRPK2 SRSF protein kinase 2 

SYN3 Synapsin III 

TGFBR1 Transforming growth factor beta receptor 1 

TIMP3 Tissue inhibitor of metallopeptidases 3 

TMEM97 Transmembrane protein 97 

TNFRSF10A TNF receptor superfamily member 10a 

TRPM3 Transient receptor potential cation channel subfamily M member 3 

TSPAN10 Tetraspanin 10 

UNC93B1 Unc-93 homolog B1 

VEGF(A) Vascular endothelial growth factor (A)

VEGFR1/FLT1 Vascular endothelial growth factor receptor 1 / fms related tyrosine kinase 1

VEGFR2/KDR Vascular endothelial growth factor receptor 2 / kinase insert domain receptor

VTN Vitronectin

Other abbreviations
aHUS Atypical hemolytic uremic syndrome 

AMD Age-related macular degeneration

AP Alternative pathway

AREDS Age-Related Eye Disease Study

BMI Body mass index

BMSC Bone marrow-derived stem cells

Bp Base pair

BrM Bruch’s membrane

BRAMD  Comparing the Effectiveness of Bevacizumab to Ranibizumab in Patients with 

Exudative Age-Related Macular Degeneration

BVZ Bevacizumab

CATT Comparison of AMD Treatments Trials

CDD Conserved Domain Database
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Chr Chromosome

CI Confidence interval

CIDR Center for Inherited Disease Research 

CIRCL Cologne Image Reading Center and Laboratory

CMT Central macular thickness

CNV Choroidal neovascularization

CP Classical pathway

CRT Central retinal thickness

CS Contrast sensitivity

CSMT Central subfield macular thickness

DA Disk area

ECM Extracellular matrix

ERC European Research Council

ETDRS Early Treatment Diabetic Retinopathy Study

ETR Manchester Eye Tissue Repository

EUGENDA European Genetic Database

FA Fluorescein angiography

FDA Food and Drug Administration

FFA Fundus fluorescein angiography

Fw Forward

GA Geographic atrophy

GWAS Genome-wide association study

hCNSSC Human central nervous system stem cells

HDL  High-density lipoprotein

hESC Human embryonic stem cell

HLA Human leukocyte antigen

IAMDGC International AMD Genomics Consortium

iPSC Induced pluripotent stem cells

IVAN Alternative treatments to Inhibit VEGF in Age-related choroidal Neovascularisation 

LD Linkage disequilibrium

LDL  Low-density lipoprotein

logMAR Logarithm of minimal angle of resolution

LP Lectin pathway

MA Minor allele

MAC Membrane attack complex

MAF Minor allele frequency

N Number

NA Not applicable

nAMD Neovascular age-related macular degeneration

NF Not found

NI Not indicated

nvAMD Neovascular age-related macular degeneration

OCT Optical coherence tomography

OR Odds ratio
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PBST Phosphate buffered saline with Tween-20

PCA Principal components analysis

PLIER Probe Logarithmic Intensity Error 

PRN Pro re nata

QC Quality control

RAC Rare allele count

RAP Retinal angiomatous proliferation

RPE Retinal pigment epithelium

Rv Reverse

SAB Standard assay buffer

SD Standard deviation

SE Standard error

SKAT-O Optimal unified sequence kernel association test

SNP Single nucleotide polymorphism

SPR Surface plasmon resonance 

TE Treat-and-extend

TFT Total foveal thickness

TLR Toll-like receptor

VA Visual acuity
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Introduction

Adapted from “Exploring the use of molecular biomarkers for precision medicine in  

age-related macular degeneration”

Molecular Diagnosis and Therapy, 2018 June; 22(3):315-343
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“All men naturally desire knowledge. An indication of this is our esteem for the 

senses; for apart from their use we esteem them for their own sake, and most of 

all the sense of sight. Not only with a view to action, but even when no action is 

contemplated, we prefer sight, generally speaking, to all the other senses. The 

reason of this is that of all the senses sight best helps us to know things, and 

reveals many distinctions.” 

 Metaphysics 1st book, Aristotle, 350 B.C.E
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1 Age-related macular degeneration (AMD) 

1.1 AMD leads to vision loss in the elderly

In the process of vision, reflected light enters the eye through the cornea and is focused 

onto the retina, located in the posterior section of the eye (Figure 1A). The retina is the light-

sensitive tissue that transforms light photons into electrical signals, which are transmitted 

to the brain and allow visual perception. It is composed of a layer of supporting cells, the 

retinal pigment epithelium (RPE) and the neurosensory retina, which consists of several 

layers of neural cells including the photoreceptors. Nutrients, oxygen, biomolecules, fluids 

and metabolic waste products are exchanged between the RPE and the bloodstream via 

the vessel network of the choroid (the choriocapillaris), passing through its innermost 

extracellular matrix layer; the Bruch’s membrane (Figure 1A). 

figure 1  Vision process and AMD

A) Schematic representation of the eye, the retina and the choriocapillaris. Light enters the eye 

and is projected onto the retina. The macula is located in the center of the retina. In the retina, 

the photoreceptors are located in the outer section, adjacent to the retinal pigment epithelium 

(RPE). The Bruch’s membrane is a collagen- and elastin-rich layer located between the RPE and the 

choriocapillaris. B) Depiction of vision loss in AMD patients. Vision of a healthy individual on the left 

and distortion of vision in an AMD patient on the right. 

Age-related macular degeneration (AMD) is a progressive disease that leads to the degene-

ration of the macula, which is located in the center of the retina (Figure 1A). The macula is 

A

B

healthy individual AMD patient
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responsible for central vision, sharp vision and color vision. Consequently, AMD patients 

lose their central vision field, have blurred vision and have less ability to discriminate 

colors (Figure 1B).

The prevalence of AMD increases exponentially with age (Figure 2). While around 1% of 

people between 65 and 69 years old are affected by AMD, in the 80-84 year range 7% are 

affected, and in the 85-89 year range the prevalence reaches 14%. Approximately half of 

these AMD patients are visually impaired.1 

figure 2   Estimated prevalence of advanced AMD per age-category in Europe (adapted from 
Colijn JM et al., 2017)

1.2  Age-related macular degeneration is a highly prevalent 

disease and impacts quality of life

AMD is the leading cause of blindness in the elderly in the Western world, and the third 

most common cause of severe visual impairment worldwide.2,3 The prevalence is higher in 

Europeans compared to Asians and Africans.4 Due to an increased aging of the population, 

the number of people affected by the disease in Europe is expected to rise up to 4.8 million 

by 2040. Worldwide, that number is expected to reach 26.2 million.4,5 Considering that 

half of these patients are expected to be visually impaired, health care efforts need to be 

intensified in order to reduce the number of AMD patients who suffer from vision loss in 

the coming years.5

AMD impacts quality of life mainly due to visual acuity loss; it can impair face recognition 

and daily life activities such as reading, watching TV, cooking, travelling, cleaning, self-

care, shopping and driving. AMD patients also have a higher risk of falling, and fear of 

falling results in limitation of activities. As a consequence, AMD patients require up to 

eight times more assistance. Moreover, AMD patients experience poorer life satisfaction, 

greater stress, and higher rates of depression compared to healthy individuals.6

Age
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1.3 Clinical characteristics of AMD

The hallmark of AMD is the presence of drusen. Drusen are deposits of extracellular debris 

that localize under the RPE, recognizable as yellowish spots on photographs of the fundus of 

the eye (Figure 3). Drusen are a possible consequence of RPE disruption, and contain lipids, 

lipoproteins and inflammatory factors, suggesting a local chronic inflammatory state.7-9 

Aging can lead to drusen formation, however, the number of drusen around the macular 

zone in AMD is notably higher compared to what would be expected in a healthy retina. In 

early stages, AMD is characterized by the appearance of more than 10 small drusen or 1-14 

intermediary-sized drusen, and pigmentary changes can also be observed (Figure 3A).10 

When drusen increase in number and size, AMD is classified as intermediate AMD (Figure 

3B). While in these stages visual acuity is well preserved,11 AMD patients can progress to 

an advanced stage in which vision loss occurs.12 Advanced AMD can be classified in two 

types: geographic atrophy (GA, Figure 3C) and choroidal neovascularization (CNV, Figure 

3D). CNV, also referred to as neovascular AMD (nvAMD), involves the abnormal growth 

of blood vessels from the choriocapillaris invading the retina, with subsequent leakage 

and bleeding, and provokes a vision-threatening scar in the macula. GA is characterized 

by atrophy of the retina, resulting from gradual loss of photoreceptors, RPE cells and the 

choriocapillaris.13,14 The prevalence of both advanced types is similar,4 however, nvAMD 

accounts for most of the visual acuity loss caused by AMD.15

figure 3  Fundus photographs of AMD patients 

A) Early AMD; the arrow indicates the drusen in the macular zone. B) Intermediate AMD.  

C)  Geographic atrophy. D) Choroidal neovascularization.  

The patients depicted in this figure were included in the studies presented in this thesis.

A

C

B

D
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1.4  Risk factors for AMD development – Genetic factors play a 

major role

AMD is a multifactorial disease; both environmental and genetic factors influence disease 

risk. Increasing age is the strongest risk factor for AMD development. Other factors 

that have consistently been associated with AMD risk are smoking, previous cataract 

surgery and family history of AMD. Smokers have approximately two times more chance 

of developing AMD compared to non-smokers (odds ratio [OR]≈2), making smoking the 

strongest modifiable risk factor for AMD. Patients who have undergone cataract surgery 

have approximately a three-fold increased chance of developing AMD (OR≈3), and family 

members of an AMD patient have a six-fold increased chance (OR≈6). Other reported 

environmental factors that potentially influence disease risk are higher body mass index, 

history of cardiovascular disease and hypertension.16

Genetic factors play a major role in the disease etiology, explaining up to 71% of the 

disease variation.17 The first single nucleotide polymorphisms (SNPs) found to be 

associated with AMD were rs1061170 or p.Y402H in the complement factor H (CFH) gene 

and rs10490924 or p.A69S in the age-related maculopathy susceptibility 2 (ARMS2) gene, 

both conferring a nearly three-fold increase in the risk of developing AMD.18-21 The largest 

case-control association study performed to date for AMD included 16,144 patients and 

17,832 controls, and identified 52 independent genetic variants across 34 loci (Table 1). 

Additionally, this study assessed whether genetic variants could explain the phenotypic 

differences observed between GA and CNV, the advanced types of AMD. SNP rs142450006, 

located in the MMP9 gene, was found to be associated exclusively with CNV. Moreover, 

besides the 52 independently associated genetic variants, four genes showed a rare 

variant burden associated with AMD: CFH, CFI, TIMP3 and SLC16A8.22 

1.5 Pathways involved in AMD etiology

Although many of the underlying mechanisms of AMD still need to be elucidated, several 

pathways are known to be involved in the disease pathogenesis. These pathways include 

angiogenesis, complement system, lipid metabolism and extracellular matrix remodeling.

1.5.1 Angiogenesis

Angiogenesis is the process of formation of new vessels, sprouting from pre-existing 

ones. In AMD, angiogenesis occurs in the neovascular form, in which new leaky vessels 

are formed in the choroidal microvascular bed.14 Under normal conditions, vessels in the 

choroid are quiescent. However, hypoxia, inflammation and oxidative stress can lead to the 

production of angiogenic factors, which in turn induce the breakdown of the endothelial cell 

basal membrane, the proliferation and migration of endothelial cells, and the degradation 

of the surrounding extracellular matrix, eventually leading to new vessel formation.23,24 
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table 1  34 loci influence the risk of AMD development (adapted from Fritsche et al., 2016)

Vascular endothelial growth factor A (VEGFA, also referred to as VEGF) has been established 

as the key mediator of pathological neovascularization in the eye.25 In AMD, elevated VEGF 

levels were found in post-mortem retinas and choroidal neovascular membranes of eyes of 

AMD patients, as well as in animal models with induced choroidal neovascularization.26-29 

Inhibition of VEGF in mice was also found to inhibit choroidal neovascularization.30 In 

addition, more recent genetic studies showed that genetic variation in the VEGFA gene is 

associated with AMD risk.31

Chr. Locus name Number of signals Lead variant Major/ minor allele OR P-value

1 CFH 8 rs10922109 C/A 0.38 9.6 × 10−618

2 COL4A3 1 rs11884770 C/T 0.9 2.9 × 10−8

3 ADAMTS9-AS2 1 rs62247658 T/C 1.14 1.8 × 10−14

3 COL8A1 2 rs140647181 T/C 1.59 1.4 × 10−11

4 CFI 2 rs10033900 C/T 1.15 5.4 × 10−17

5 C9 1 rs62358361 G/T 1.8 1.3 × 10−14

5 PRLR-SPEF2 1 rs114092250 G/A 0.7 2.1 × 10−8

6 C2-CFB-SKIV2L 4 rs116503776 G/A 0.57 1.2 × 10−103

6 VEGFA 1 rs943080 T/C 0.88 1.1 × 10−14

7 PILRB-PILRA 1 rs7803454 C/T 1.13 4.8 × 10−9

7 KMT2E-SRPK2 1 rs1142 C/T 1.11 1.4 × 10−9

8 TNFRSF10A 1 rs79037040 T/G 0.9 4.5 × 10−11

9 TGFBR1 1 rs1626340 G/A 0.88 3.8 × 10−10

9 TRPM3 1 rs71507014 GC/G 1.1 3.0 × 10−8

9 MIR6130-RORB 1 rs10781182 G/T 1.11 2.6 × 10−9

9 ABCA1 1 rs2740488 A/C 0.9 1.2 × 10−8

10 ARMS2-HTRA1 1 rs3750846 T/C 2.81 6.5 × 10−735

10 ARHGAP21 1 rs12357257 G/A 1.11 4.4 × 10−8

12 RDH5-CD63 1 rs3138141 C/A 1.16 4.3 × 10−9

12 ACAD10 1 rs61941274 G/A 1.51 1.1 × 10−9

13 B3GALTL 1 rs9564692 C/T 0.89 3.3 × 10−10

14 RAD51B 2 rs61985136 T/C 0.9 1.6 × 10−10

15 LIPC 2 rs2043085 T/C 0.87 4.3 × 10−15

16 CETP 2 rs5817082 C/CA 0.84 3.6 × 10−19

16 CTRB2-CTRB1 1 rs72802342 C/A 0.79 5.0 × 10−12

17 TMEM97-VTN 1 rs11080055 C/A 0.91 1.0 × 10−8

17 NPLOC4- 
TSPAN10

1 rs6565597 C/T 1.13 1.5 × 10−11

19 C3 3 rs2230199 C/G 1.43 3.8 × 10−69

19 APOE 2 rs429358 T/C 0.7 2.4 × 10−42

19 CNN2 1 rs67538026 C/T 0.9 2.6 × 10−8

20 MMP9 1 rs142450006 TTTTC/T 0.85 2.4 × 10−10

20 C20orf85 1 rs201459901 T/TA 0.76 3.1 × 10−16

22 SYN3-TIMP3 1 rs5754227 T/C 0.77 1.1 × 10−24

22 SLC16A8 1 rs8135665 C/T 1.14 5.5 × 10−11
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VEGFA is expressed by a variety of cells, including the RPE and immune cells. Transcription 

of the VEGFA gene leads to several alternatively spliced isoforms, with VEGFA
165

 being 

the most highly expressed in the RPE.32,33 The tyrosine kinase receptor VEGFR-2 is the 

key receptor for angiogenesis and is the predominantly expressed receptor on vascular 

endothelial cells.34 Neuropilin 1 (NRP-1) is a co-receptor for VEGFR-2 that upon VEGF 

binding enhances the transduction signal up to 6-fold (Figure 4A).35,36 One of the key 

regulators of VEGF expression is hypoxia-inducible factor 1α (HIF-1α), which in hypoxic 

conditions will induce VEGF expression.37 Inflammatory cytokines such as IFN-γ, TNF-α 

and IL-1β can also promote VEGF expression.38 Besides the pathological effect of elevated 

VEGF levels, further studies have observed that VEGF represents a survival factor required 

for neuronal cells and blood vessel homeostasis, and is constitutively produced at low 

levels by several cell types of the retina.39,40

figure 4  The VEGFA and complement pathways are targets for therapy for AMD 

VEGF = Vascular endothelial growth factor, VEGFR = Vascular endothelial factor receptor, FLT-1 =  

Fms related tyrosine kinase 1, KDR = Kinase insert domain receptor, FB = Complement factor B,  

FD = Complement factor D, FH = Complement factor H, C3 to 9 = Complement component 3 to 9, 

MAC = Membrane attack complex, Complement factor I = FI. 
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C4bC2b, C3(H
2
O)Bb and C3bBb are C3 convertases, C4bC2bC3b and C3bBbC3b are C5 convertases. 

A red line towards the target indicates inhibition, whereas a green line indicates augmentation. 

A) Schematic representation of the VEGFA pathway in which therapies used for the treatment of 

neovascular AMD are depicted. VEGFA can bind either to VEGF receptor 1 (VEGFR-1 or FLT-1) or to 

VEGF receptor 2 (VEGFR-2 or KDR). Binding to VEGFR-1 can positively or negatively regulate VEGFR-2 

activity. Upon VEGF binding to VEGFR-2, the receptor is phosphorylated, which in turn leads to the 

activation of signaling pathways for proliferation, migration and survival of endothelial cells, as well 

as to increased vascular permeability. B)  Schematic representation of the complement cascade 

in which complement inhibiting therapies in clinical trials are depicted. The complement system 

can be initiated by three different pathways: the classical pathway , activated by antibody-antigen 

complexes, the lectin pathway, activated by lectin or ficolin binding to carbohydrates, and the 

alternative pathway (AP), which is constitutively activated at a low level due to the spontaneous 

hydrolysis of small amounts of C3 into C3
H2O

. All three pathways lead to the formation of C3 

convertases (C4bC2b for the CP and LP, and C3(H2O)Bb for the AP) that catalyze a proteolytic 

cleavage of the central component C3 into the potent anaphylatoxin C3a and the opsonization 

molecule C3b, which can be further cleaved into C3d on the cell surface. At the cell surface, factor 

D (FD) cleaves C3b-bound factor B (FB) to Ba and Bb, the latter forming the AP C3 convertase 

(C3bBb). This convertase will then cleave more C3, initiating an amplification loop. The alternative 

pathway can also be activated through properdin. Properdin recognizes pathogens or apoptosis 

markers and attracts C3b to the targeted cell surface generating and stabilizing new convertases. 

This amplification leads to a high amount of deposited C3b that, downstream, will bind the C3 

convertases forming the C5 convertases (C4bC2bC3b for the CP and LP, and C3bBbC3b for the 

AP). The C5 convertases will then cleave complement C5 into C5a and C5b initiating a common 

terminal pathway. C5a is another potent anaphylatoxin and C5b can bind complement C6 and C7. 

This complex binds to the cell membrane and recruits C8 and several molecules of C9 to form the 

membrane-attack complex (MAC), a pore capable of osmotic cytolysis. In order to regulate the 

rapid activation and exponential effects of the complement cascade, soluble and membrane-bound 

proteins act as inhibitors. Factor H (FH) is the main regulator of the AP, inhibiting the system at 

different levels. It disassembles C3Bb convertases by competing with Bb. C3b can also be degraded 

by Factor I (FI), of which FH is a cofactor. FH recognizes the host cells by surface pattern binding, 

having an essential role in preventing self-attack. Another inhibitor of the system acting on the 

terminal pathway is MAC-inhibitory protein (MAC-IP, also known as CD59), which also recognizes host 

cells, and inhibits the formation of the MAC. 

1.5.2 The complement system

The complement system is an integral part of our innate immunity and connects the 

innate to the adaptive immune response. It consists of a complex network of plasma 

and membrane-associated proteins that, in order to maintain homeostasis and protect 

against foreign intruders, are capable of orchestrating a rapid and efficient response via 

inflammation, opsonization and cytolysis (Figure 4B).41 

The first evidence for the involvement of the complement system in AMD came from 

histological and molecular analysis of drusen components, which revealed components 

of the complement cascade such as C3a and vitronectin.42-45 The first genetic studies 

corroborated this finding when the genetic variant p.Y402H in the CFH gene was found 

to be strongly associated with AMD.18-20 Further genetic studies revealed AMD-associated 

variants in the CFI, C2/CFB, C3, C9 and VTN complement genes (Table 1).22 Finally, systemic 

measurements of complement activation fragments revealed elevated levels of Ba, Bb, 
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C3a, C3d, and C5a in AMD patients compared to controls, suggesting a chronic over-

activation of the complement system.46-52 A life-long aberrant activation of the complement 

system determined by genetic variants, together with an environment with high oxidative 

stress, may lead to a chronic level of inflammation in the aging retina, resulting in the 

degeneration of the macular structures.53 

1.5.3 Lipid metabolism

The lipid metabolism is also known to be involved in AMD pathogenesis. Genetic variants 

in the hepatic lipase C (LIPC), cholesterylester transfer protein (CETP), apolipoprotein E 

(APOE), ATP-binding cassette subfamily A member 1 (ABCA1) lipid-related genes have 

been seen to modulate AMD disease risk (Table 1).22,54 Moreover, variants in these genes 

and in the VEGFA gene have also been associated with high-density lipoprotein (HDL) 

cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol and/or triglyceride 

levels.55 Other evidence supporting the relevance of the lipid metabolism in AMD is the 

accumulation of lipids in drusen, which represent around the 40% of their content.8,56 

Systemic levels of lipids, lipoproteins and fatty acids have been evaluated and, although 

no clear associations have been found for the majority of the measurements, several 

studies suggest that elevated HDL cholesterol levels might be associated with a higher risk 

for AMD development.57 

1.5.4 Extracellular matrix remodeling

Extracellular matrix remodeling is regulated by matrix metalloproteinases (MMPs) and 

tissue inhibitors of metallopeptidases (TIMPs), and is known to be altered in AMD.58 Aging 

leads to a thickening of the Bruch’s membrane, altering its permeability and limiting the 

exchange of metabolites between the choroid and the RPE. This, in turn, contributes to 

drusen formation.59 Moreover, MMP degradation of components of the capillary basement 

membrane for new vessel outgrowth takes place in the neovascularization process.60  

Further evidence of an altered extracellular matrix integrity in AMD comes from genetic 

studies, in which genetic variants in the tissue inhibitor of metalloproteinases 3 gene 

(TIMP3) and the metalloproteinase 9 (MMP9) have been associated with AMD. Additionally, 

genetic variants in fibrillin 2 (FBN2, involved in elastic fiber assembly), transforming growth 

factor beta receptor 1 (TGFBR1, involved in extracellular matrix production), collagen 

type VIII alpha 1 chain (COL8A1) and collagen type X alpha 1 chain (COL10A1) have been 

described to influence AMD disease risk (Table 1).22,61-63 

1.6 Therapeutic options for AMD

1.6.1 Supplements

Dietary supplementation with vitamins and zinc is proven to reduce the risk of progression 

to advanced AMD. These supplements act against oxidative stress, which is thought to be 
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one of the drivers of AMD pathogenesis.64,65 Oxidative stress refers to a disturbance in the 

balance between the production of reactive oxygen species and antioxidant defenses. The 

retina is highly susceptible to oxidative stress due to the sunlight exposure, high oxygen 

consumption and high concentration of polyunsaturated fatty acids. Moreover, oxidative 

stress increases with age and is associated with smoking, another AMD risk factor.65 

The notion that oxidative stress may play an important role in AMD development and 

progression led to development of the Age-Related Eye Disease Study (AREDS) clinical trial 

that evaluated the effect of high doses of vitamin C, vitamin E, beta-carotene and zinc on 

AMD progression. In 2001, the AREDS trial concluded that patients with intermediate AMD 

in at least one eye receiving this formulation reduced their risk of progression to advanced 

AMD by 25% at 5 years. Moreover, in those patients, a 19% reduction in moderate vision 

loss was additionally observed.66 An AREDS2 supplementation trial followed in 2013, 

describing an improved formula with lutein and zeaxanthin substituting beta-carotene. This 

formula showed the same effects, but is preferred as beta-carotene conferred risk for lung 

cancer in former smokers.67 Clinicians have rapidly adopted the AREDS recommendations 

and the oral use of antioxidants combined with zinc is currently prescribed for intermediate 

or unilateral advanced AMD. 

Supplements have been proven to reduce AMD progression in the overall patient 

population. However, the effect of these supplements is variable and the protective 

effects on progression to advanced AMD range from an OR of 0.47 to an OR of 0.91.66 The 

identification of factors involved in this variability could lead to an improvement in the 

treatment strategy and therefore on its effects. Indeed, the patient’s genetic background 

may be one of the factors underlying these differences, as may influence the effects of 

the individual components of the formula. Therefore, it has been hypothesized that the 

effectiveness of the treatment with dietary supplements in reducing disease progression 

may improve tailoring the prescription to each individual genetic makeup.

1.6.2 Anti-VEGF antibodies for neovascular AMD

The discovery of VEGF as the main driver of pathological neovascularization, lead to the 

development of anti-VEGF therapies for cancer, and soon also for the CNV form of AMD.68 

Nowadays, the gold-standard treatment for CNV consists of intravitreal injections of anti-

VEGF antibodies. Anti-VEGF antibodies for CNV treatment include ranibizumab (Lucentis; 

Novartis, Basel, Switzerland, and Genentech Inc., South San Francisco, USA), bevacizumab 

(Avastin, Genentech, South San Francisco, USA), and aflibercept (EYLEA, Regeneron 

Pharmaceutical Inc, Tarrytown, USA, Figure 4A). 

Ranibizumab is a recombinant monoclonal antibody fragment against all VEGFA isoforms, 

which was approved by the United States Food and Drug Administration (FDA) for the 

treatment of CNV in 2006 after showing efficacy in the MARINA and ANCHOR trials.69,70 

Bevacizumab is a full-length monoclonal antibody, also against all VEGFA isoforms. This 

drug has been approved by the FDA for the treatment of several cancer types, however, 

it is administered off-label for the treatment of CNV. The Comparison of AMD Treatments 
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Trials (CATT) and the Inhibition of VEGF in Age-related choroidal Neovascularisation (IVAN) 

clinical trials demonstrated similar outcomes after bevacizumab treatment compared to 

ranibizumab.71-74 The anti-VEGF agents ranibizumab and bevacizumab are administred 

as a loading dose of three monthly injections and the follow-up treatment differs among 

clinics. The most used strategies are pro re nata (PRN) and treat-and-extend (TAE). In the 

PRN, patients are followed monthly but only injected when needed, whereas in the TAE 

protocol, patients receive an injection every visit, but the time between visits is extended 

or shortened depending on the disease progression.75,76 Finally, aflibercept consists 

of key domains of VEGFR1 and VEGFR2 fused with a portion of human antibody. Unlike 

ranibizumab and bevacizumab, aflibercept binds VEGFA, VEGFB and placental growth 

factor (PGF), acting as a VEGF decoy-receptor. Aflibercept was granted the FDA approval in 

2011, and has similar efficacy outcomes as ranibizumab, however, a less frequent dosing is 

needed, once every two months instead of monthly (Figure 4A).77,78

The use of anti-VEGF drugs to treat CNV has significantly changed the prognosis of the 

disease and has led to significant improvements in visual acuity. Nevertheless, a more 

detailed analysis of individual patient outcomes shows that not all patients benefit equally 

from this therapy. Vision remains stable or improves in approximately 80% of the patients, 

but 20% of treated patients continue to lose vision despite treatment.69,70 Along the same 

line, anatomical changes in the retina after treatment, reflecting fluid clearance, are also 

variable among patients.71

Understanding the reasons underlying this variability in treatment outcome after anti-VEGF 

injections can help improve treatment strategies, but also would allow early identification 

of poor responders, and would enable individual treatment optimization. Clinical and 

epidemiological factors that have repeatedly been associated with worse treatment 

outcome include baseline parameters such as older age, larger neovascular lesion, larger 

retinal tissue thickness and lower visual acuity.79 These factors are highly correlated and 

indicative of longer disease duration, highlighting the importance of initiating treatment 

in an early phase. Nevertheless, these factors cannot fully explain the wide range in 

treatment outcomes.80 Due to the highly heritable nature of AMD, it has been hypothesized 

that genetic factors may influence treatment outcome. Genetic markers are independent of 

disease duration and therefore may explain treatment outcome variability. 

1.6.3  Under development: Complement inhibiting therapies for geographic 
atrophy in AMD

Anti-VEGF treatment is only applicable to CNV, which affects only half of the advanced AMD 

patients. For the other half, who suffer from GA, no treatment is available yet. A prime 

candidate target in AMD is the complement system, and several therapies aiming to inhibit 

complement activity are being developed (Figure 4B).81 These therapies aim to slow down 

disease progression and to prevent the development of GA, but may also be useful for CNV 

patients in combination with anti-VEGF drugs. 
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Complement-inhibiting therapies that have gone through clinical trials include APL-2, 

Lampalizumab, Eculizumab, Tesidolumab, CLG561, Zimura and AAVCAGsCD59 (Figure 4B). 

These drugs inhibit the complement system at different levels of the proteolytic cascade.

APL-2 (Apellis Pharmaceuticals, Crestwood, USA), a reformulated version of POT-4, is a 

cyclic peptide inhibitor of complement component 3 (C3). This drug is currently being 

tested in a phase II clinical trial (https://clinicaltrials.gov, NCT02503332). In a press 

release, Apellis Pharmaceuticals communicated that this clinical trial has resulted in a 

significant reduction in the rate of geographic lesion growth over 12 months.82 Lampalizumab 

(Genentech Inc., South San Francisco, CA) is an antigen-binding fragment of a humanized 

monoclonal antibody that targets complement factor D (FD). The phase II clinical trial for 

Lampalizumab (MAHALO) has been completed, and yielded promising results with a 20% 

reduction in atrophy area progression at month 18 for the monthly treated group compared to 

placebo.83 Lampalizumab is currently being evaluated in two phase III clinical trials (SPECTRI 

and CHROMA, NCT02247531 and NCT02247479 respectively). Recently, Genentech revealed 

in a press release that SPECTRI did not meet its primary endpoint of reducing mean change 

in GA lesion area, and that they are expecting the results of CHROMA to be evaluated in 

November 2017.84 Eculizumab (Soliris, Alexion Pharmaceuticals, New Haven, USA) is 

a humanized monoclonal antibody targeting complement 5 (C5). Eculizumab has been 

approved for the treatment of paroxysmal nocturnal hemoglobinuria. In a phase II clinical 

trial in AMD (COMPLETE, NCT00935883), systemically administered eculizumab was well-

tolerated, however, it did not decrease the growth rate of geographic atrophy significantly.85 

Another drug targeting C5 is Zimura (Ophtotech, USA), a chemically synthesized aptamer. 

This drug is currently in phase II/III trial (NCT02686658). Tesidolumab (LFG316, Novartis, 

Basel, Switzerland/MorphoSys, Planegg, Germany) is a human monoclonal antibody also 

targeting C5. The phase II clinical trial has been completed (NCT015275000); however, 

the results have not yet been published. Currently, another phase II trial is ongoing which 

analyzes CLG561 (Novartis, Basel, Switzerland), a human antibody Fab that neutralizes 

properdin, as monotherapy or in combination with tesidolumab (NCT02515942). Finally, the 

first gene therapy tested for GA treatment is HMR59 (AAVCAGsCD59, Hemera Biosciences 

Inc., Newton, USA), and its safety is currently being evaluated in a phase I clinical trial 

(NCT03144999). This therapy consists of a single injection of an adeno-associated virus that 

transfects the retinal cells, leading to expression of a soluble form of MAC-inhibitory protein 

(MAC-IP), also named CD59 (Figure 4B).

These therapies may not work equally in all AMD patients, and may be more effective in 

AMD patients in which the complement system is most over-activated. Identification of 

genetic variants as biomarkers for complement activation in AMD may be useful for 

selecting patients for complement inhibiting therapies.
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2  Genetic association studies for understanding 

complex traits

Genetic association studies are used to study multifactorial traits and to assess whether 

one or more genetic variants co-occur with a trait more often than would be expected by 

chance.86 Genetic association studies allow the identification of risk factors and can give 

insights into the biological mechanisms underlying a trait.18,87 An association between 

a genetic variant and a trait indicates a direct or indirect relationship. In the latter case, 

the associated variant is a marker for the causal variant as they are, to some degree, 

co-inherited. The indirect associations are usually weaker than the direct associations, 

however, can be useful to identify causal genes.88

There are two different strategies for performing association studies: the (targeted) 

candidate gene approach, and the (untargeted) genome-wide approach. In the candidate 

gene approach, genetic variants within a pre-specified gene or group of genes are analyzed. 

The variants chosen for analysis can be also pre-specified. This type of analysis is based 

on a hypothesis, and therefore, based on a priori knowledge of the gene’s function and the 

investigated trait.89 In contrast, genome-wide association studies (GWAS) explore variants 

distributed genome-wide and therefore entail a hypothesis-free approach.90 GWAS typically 

analyze common variants, however, analysis of single rare variants in the same manner 

has little statistical power due to the low allele frequencies. In order to overcome this 

limitation, rare variants can be grouped by gene, and the burden of rare genetic variation 

in each gene can be evaluated, increasing in this way the statistical power.91 One of the 

most important considerations in genetic association analysis is to avoid confounding 

due to population stratification; differences in allele frequencies across populations and 

differences in phenotype prevalence can lead to spurious results.90

3  Pharmacogenetics and precision medicine for 

AMD

3.1 Potential impact of pharmacogenetics 

Precision medicine aims to improve healthcare through individualized selection of treatment 

options, taking into account each patient’s characteristics and individual needs. The field 

of precision medicine has moved forward rapidly in the last decades thanks to association 

studies, which have identified genetic markers that predict response to treatment in 

many different diseases.92 Genetic screening prior to treatment is now increasingly being 

implemented in the healthcare system.93-95 A prime example is the oncology field, where, 

for instance, genetic variants in the DPYD gene are highly recommended to be screened to 
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avoid toxicity from fluoropyrimidine drugs.96 Other examples include the anti-coagulant 

warfarin, for which a GWAS successfully identified genetic variants with an effect on the 

maintenance dose,97 and genotype-guided prescription has been established to improve 

safety and effectiveness, and to reduce healthcare costs.98-100

3.2  First steps in the use of genetic biomarkers for precision 

medicine for AMD: where are we now and what is needed?

The use of dietary supplements has been proven to be effective in reducing the progression 

to late AMD and several groups have investigated whether the response is variable 

depending on the CFH rs1061170 and ARMS2 rs10490924 genotypes. At the beginning 

of this thesis, there was a discrepancy in the results of such studies and therefore not 

a clear biomarker.101-103 More comprehensive genetic studies are needed but it has not 

been the purpose of this thesis, however, the studies on this topic have been analyzed and 

compared in the discussion section (chapter 4, section 1.1).

The only available therapy to treat AMD symptoms is anti-VEGF injections for the CNV 

form, however, as mentioned in section 1.6.2, treatment response is highly variable among 

CNV patients. Identification of pharmacogenetic associations for AMD is highly relevant 

as they may help understand the causes underlying this variability, can be used for anti-

VEGF therapy planning and can help selecting patients for new therapy options. Before the 

start of this thesis work, several genetic variants such as rs1061170 in CFH, rs10490924 in 

ARMS2, rs699947 in VEGFA and rs4576072 in KDR had been identified in candidate gene 

studies, which suggested a role for genetic variation in treatment response, however, a 

systematic analysis of the 52 AMD-associated variants had not been performed yet.104-

127 One GWAS had been carried out which did not identify any statistically significant 

association, however, this study was very limited in sample size (n=65). Additionally, the 

role of rare genetic variants, which may have stronger effects on treatment response, had 

not been explored yet.128 As a consequence, more comprehensive association analyses 

were needed in order to find genetic biomarkers for treatment response to anti-VEGF 

therapy in CNV. 

For the treatment of advanced GA, complement inhibiting therapies are currently under 

development, but these will most probably not be equally effective in all AMD patients. 

Genetic variants that reflect complement activation in AMD patients could be used as 

biomarkers for patient selection in complement inhibiting therapies. At the start of this 

thesis work, three studies had analyzed the association of AMD variants with systemic 

complement activation measurements.48,50,52 Those studies had successfully identify 

variants in the CFH, CFB/C2, C3 and ARMS2 genes associated with systemic measurements 

of complement activation such as C3a, C5a, Ba and the C3d/C3 ratio. These results 

suggested that genetic variants could be useful biomarkers of complement activation 

in AMD. However, a comprehensive analysis of the genetic influence on complement 

activation had not yet been performed, nor had the 52 AMD-associated variants been 

comprehensively analyzed yet.
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4 Aims and outline of this thesis

Taking first steps towards a personalized treatment for AMD patients, we sought to identify 

genetic factors associated with response to anti-VEGF therapy, and to identify genetic 

variants associated with complement activation in AMD. 

1 Genetic factors associated with response to anti-VEGF therapy in AMD

Chapter 2 describes the different approaches we have taken for the identification of genetic 

variants associated with treatment response to anti-VEGF therapy in CNV. Chapter 2.1 

describes a candidate gene study of the NRP1 gene, which identified rs2070296 as a new 

genetic variant associated with treatment response. Taking a hypothesis-free approach as 

a next step, we performed a GWAS study using pooled DNA in chapter 2.2. This study was 

performed in collaboration with the group of Prof. Baird from the Centre for Eye Research 

Australia, and lead to the identification of rs4910623 in the OR52B4 gene as a new SNP 

associated with treatment response. In chapter 2.3, leading a large collaborative study, 

we performed a large GWAS for treatment response. In this study we also evaluated 

previously reported associations and the 52 AMD-associated variants, which were not 

found to influence treatment outcome in our study. Additionally, we performed genome-

wide gene-based tests of rare variants and identified that rare variation in the C10ORF88 

and UNC93B1 genes seems to have a profound impact on treatment outcome.

2 Genetic factors associated with complement activation in AMD

Chapter 3 describes studies on the complement system, which can be considered a first 

step in order to identify the most suitable patients for therapies targeting the complement 

system. In chapter 3.1, we performed a GWAS on systemic complement activation levels 

in order to identify genetic variants that associate with complement activation levels. We 

identified two independent signals at the CFH/CFHR locus. The top SNPs for these loci 

were rs3753396 located in CFH and rs6685931 located in the complement factor H related 

4 (CFHR4) gene. The results of this study lead to further investigation of the role of FHR-4 

in AMD, which is described in chapter 3.2. The biochemical studies together with genetic 

analyses presented in this chapter support that FHR-4 is a new complement component 

involved in AMD, and represents a promising new target for treatment. 
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Abstract

Objective: The aim of the study was to investigate the role of single nucleotide 

polymorphisms (SNPs) located in the neuropilin-1 (NRP1) gene in treatment response to 

antivascular endothelial growth factor (VEGF) therapy for neovascular age-related macular 

degeneration (nvAMD).

 

Methods: Four SNPs in the NRP1 gene (rs2229935, rs2247383, rs2070296 and rs2804495) 

were genotyped in a study cohort of 377 nvAMD patients who received the loading dose of 

three monthly ranibizumab injections. Treatment response was assessed as the change in 

visual acuity after three monthly loading injections compared with baseline.

 

Results: SNP rs2070296 was associated with change in visual acuity after 3 months of 

treatment. Patients carrying the GA or AA genotypes performed significantly worse than 

individuals carrying the GG genotype (P=0.01). A cumulative effect of rs2070296 in the 

NRP1 gene and rs4576072 located in the VEGF receptor 2 (VEGFR2 or KDR) gene, previously 

associated with treatment response, was observed. Patients carrying two risk alleles 

performed significantly worse than patients carrying zero or one risk allele (P=0.03) and 

patients with more than two risk alleles responded even worse to the therapy (P=3x10-3). 

The combined effect of these two SNPs on the response was also seen after 6 and 12 

months of treatment.

 

Conclusion: This study suggests that genetic variation in NRP1, a key molecule in VEGFA-

driven neovascularization, influences treatment response to ranibizumab in nvAMD 

patients. The results of this study may be used to generate prediction models for treatment 

response, which in the future may help tailor medical care to individual needs.
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Introduction

Age-related macular degeneration (AMD) is the leading cause of blindness in the western 

world1. The neovascular, or wet, form of AMD (nvAMD) is the most aggressive, being 

responsible for around 90% of the vision loss caused by the disease2. 

The first choice therapy for nvAMD consists of intravitreal injections of antivascular 

endothelial growth factor (VEGF) drugs. Although this treatment has dramatically changed 

the prognosis of the disease with a significant mean improvement in visual acuity (VA)3, a 

high variability in response rates has been described. Approximately 10% of the treated 

patients do not respond to anti-VEGF therapy and still lose more than 15 Early Treatment 

Diabetic Retinopathy Study (ETDRS) letters 2 years after the start of treatment3,4, which is 

comparable to the natural course of the disease5. 

To date, several studies have suggested that genetic variants can influence this variability 

in treatment response6-16. These studies have mainly focused on single nucleotide 

polymorphisms (SNPs) located in AMD-associated loci, but common variants in VEGF 

family members, cytokines, and proteins involved in development and maintenance of the 

retinal vasculature have also been explored. Not all studies showed consistent results9,16, 

however, due to a high variability in study designs it is difficult to reliably compare the 

outcomes of these studies. Therefore, the relevance and basis of the genetic component of 

this diverse response to treatment still needs to be elucidated.

Recently, two SNPs in the VEGF receptor 2 (VEGFR2 or KDR) gene, which encodes the main 

receptor of VEGFA on vascular endothelial cells17, have been associated with better anti-

VEGF response rates12. Consequently, other molecules involved in this pathway are also 

potential candidates to influence treatment response. Neuropilin-1 (NRP1) is a coreceptor 

of VEGFA that binds to the predominant isoform, VEGFA
165

18, and forms a complex with 

VEGFR2, which enhances the transduction of downstream signaling19-22. Recent studies 

have implicated NRP1 signaling pathways in pathological neovascularization of the retina23 

and NRP1 has been described to be involved in VEGFA-mediated vascular leakage19. Indeed, 

NRP1 has been shown to affect the evolution of the choroidal neovascularization in AMD24 

and has been proposed as a new target molecule for AMD treatment25. Moreover, NRP1 

seems to play a role in the cancer prognosis when treated with anti-VEGF compounds26, 

which makes this molecule a compelling candidate for being involved in response variation.

This study aimed to determine whether genetic variants in the NRP1 gene influence 

treatment response to anti-VEGF therapy in patients with nvAMD.
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Patients and methods

Study population

The study cohort comprised 377 eyes of 377 treatment-naive patients aged 50 years or 

older with active choroidal neovascularization secondary to AMD. A total of 145 patients 

were treated at the Department of Ophthalmology of the Radboud University Medical Center, 

Nijmegen, the Netherlands, 182 at the University of Cologne, Germany; and the remaining 

50 patients at the McGill University Health Center, Montreal, Canada. The patients from the 

German and Dutch clinics were enrolled between 2008 and 2010 in the European Genetic 

Database (EUGENDA), a multicenter database for the clinical and molecular analysis of AMD.

The study was performed in accordance with the tenets of the Declaration of Helsinki (7th 

revision). Approval of the local ethics committee was obtained for all three centers and 

written informed consent was acquired from all participants. 

The diagnosis of active nvAMD was determined by retinal specialists based on ophthalmic 

examination, spectral-domain optical coherence tomography (OCT) (Spectralis HRA+OCT, 

Heidelberg Engineering, Heidelberg, Germany) or fluorescein angiography (FA) (Spectralis 

HRA+OCT, Heidelberg Engineering; or Imagenet, Topcon Corporation, Tokyo, Japan). 

Exclusion criteria included any previous ophthalmic surgery, except for cataract removal, 

and retinal disorders other than AMD. If both eyes received treatment, the first eye to 

receive treatment was chosen as the study eye. If treatment started simultaneously, the 

study eye was chosen randomly.

All patients were treated between 2007 and 2009 with three consecutive monthly 

intravitreal injections of 0.5 mg ranibizumab (Lucentis; Novartis Pharmaceuticals UK 

Limited, Surrey, UK). VA was assessed in all cases before treatment (baseline) and after 

the three loading monthly injections. After the loading dose, patients were followed up 

on a monthly basis and treated on a pro re nata regimen at the clinics of Nijmegen and 

Cologne. At the clinic of Montreal, the patients were further managed through a treat-and-

extend regimen. OCT, best-corrected VA, fundus examination and FA were used alone or 

in combination to evaluate the effectiveness of the treatment. Recurrence or persistence 

of the choroidal neovascularization was defined as fluid seen by OCT, loss of VA of five 

ETDRS letters or more, leakage seen on FA, or new macular hemorrhage or fluid. In 

case of persistence or recurrence of the choroidal neovascularization, patients received 

three consecutive monthly ranibizumab injections. If available, VA was collected after 6 

and 12 months of treatment. For 304 patients, Snellen VA measurements were collected 

retrospectively and 73 patients were followed up prospectively using ETDRS VA. Treatment 

response was defined as the change in VA after the three first months of treatment 

compared with baseline. Longterm treatment response was defined as the change in 

VA after 6 and 12 months of treatment. Age at first ranibizumab injection, sex and other 

baseline variables were collected using questionnaires or retrieved from the patient files.
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Genotyping

The SNPs rs2229935, rs2247383, rs2070296 and rs2804495 were selected from the major 

haploblocks of the NRP1 gene for genotyping (see Table, Supplemental digital content 1, 

http://links.lww.com/FPC/A912, which details the chromosomal location of the SNPs). 

Two SNPs, rs2070296 (p.Ala179=) and rs2229935 (p.Tyr422=), were located in the coding 

region of NRP1. 

Genotyping of the SNPs was performed using competitive allele-specific KASP genotyping 

chemistry (LGC, Hoddesdon, UK). Primers and probes were developed by LGC, (see Table, 

Supplemental digital content 1, http://links.lww.com/FPC/A912, which describes the 

probes used). Quality control of the genotyping assays was assessed using duplicate DNA 

samples in each run, achieving a concordance of 100% of the results. 

Sanger sequencing of exon 4 of the NRP1 gene (NM_003873.5) was performed in 11 

patients for which genotyping by KASPar of SNP rs2070296 was not successful. Primers 

were designed using Primer3 software27 (see Table, Supplemental digital content 1, http://

links.lww.com/FPC/A912, which describes the primers used). PCR was performed, and the 

amplicons were sequenced using an automated sequencer (BigDye Terminator, version 

3, 3730 DNA analyzer; Applied Biosystems; Waltham, Massachusetts, USA). Sequences 

were assembled and analyzed using ContigExpress (Vector NTI Advance, version 11.0, Life 

Technologies). 

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics for Windows, version 20.0 

(IBM Corp., Armonk, New York, USA). ETDRS and Snellen VA records were converted to the 

logarithm of minimal angle of resolution (logMAR) for the purpose of statistical analysis. 

Change in VA after 3, 6 and 12 months was calculated as the difference between VA at 

baseline and VA at the different time points.

Deviation of the genotype frequencies from those expected under Hardy-Weinberg 

equilibrium was assessed by means of a χ2 test. To determine the influence of the baseline 

variables on the change in VA after 3 months Spearman’s correlation was used for the 

continuous variables, and Kruskal-Wallis or Mann-Whitney U tests were performed for the 

categorical variables. 

The association of the different SNPs with the change in VA after 3, 6 and 12 months was 

assessed using Mann-Whitney U tests. Bonferroni’s procedure was applied to correct for 

four tests (P≤0.01 were considered statistically significant).

To analyze the combined effect of NRP1 rs2070296 and KDR rs4576072 on the change in 

VA after 3, 6 and 12 months, patients were combined into three groups of approximately 
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equal size (carriers of less than two risk alleles, of two risk alleles, or of more than two 

risk alleles), and a Mann-Whitney U test was performed. Only the patients who were 

successfully genotyped for rs4576072 in a previous study12 were included in the analysis 

(n=353). The rs4576072 major allele (T) has been reported to lead to a worse response to 

therapy12, therefore, this allele was considered the risk allele.

table 1  Characteristics of the study cohort.

Demographics

 Age at first injection (years), mean (SD) 77.11 (7.46)

 Female gender, n (%) 215 (57.0)

Disease history

Hypertension (n=259)a, n (%)b 154 (59.5)

Diabetes mellitus (n=259)a, n (%)b 47 (18.1)

Other environmental factors

BMI (kg/m2) (n=258)a, median (quartiles) 25.39 (23.52 - 28.49)

Ophthalmological details

Baseline VA (logMAR), median (quartiles) 0.543 (0.398 - 1.000)

Equivalent baseline VA (ETDRS letters)c, median (quartiles) 57.9 (35.0 - 65.1)

 Change in VA after 3 months (logMAR)d, median (quartiles) 0.097 (0.000 - 0.259)

Equivalent change in VA after 3 months (ETDRS letters)c,d, median (quartiles) 4.8 (0.0 - 12.2)

Change in VA after 6 months (logMAR)d, median (quartiles) (n=262) 0.090 (-0.097 - 0.223)

Equivalent change in VA after 6 months (ETDRS letters)c,d, median (quartiles) 4.5 (-4.9 - 11.2)

Change in VA after 12 months (logMAR)d, median (quartiles) (n=240) 0.040 (-0.192 - 0.204)

Equivalent change in VA after 12 months (ETDRS letters)c,d, median (quartiles) 2 (-9.6 - 10.2)

 Type of CNV (n=335)a

 Occult with no classic, n (%)b 199 (59.4)

 RAP, n (%)b 21 (6.3)

 Minimally classic, n (%)b 42 (12.5)

 Predominantly classic, n (%)b 73 (21.8)

 Lesion size (DA) (n=285)a

 <2, n (%)b 92 (32.3)

 2-4, n (%)b 91 (31.9)

 4-6, n (%)b 43 (15.1)

 >6, n (%)b 59 (20.7)

SD, standard deviation; n, number of patients; VA, visual acuity; logMAR, logarithm of the 

Minimum Angle of Resolution; ETDRS, Early Treatment Diabetic Retinopathy Study; CNV, choroidal 

neovascularization; RAP, retinal angiomatous proliferation; DA, disk areas.
a  For the remaining patients no data were available. 
b  Valid percentage.
c    ETDRS letters equivalents were calculated in the following manner:  

ETDRS letters = 85 – logMAR/0.02 for logMAR values.
d   Change in VA after 3, 6 and 12 months was calculated in the following manner:  

VA prior to treatment - VA after 3, 6 or 12 months of treatment.
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table 2   Association of genotypes in NRP1 with response to ranibizumab treatment.

SNP N (%) ΔVA after 3 months (logMAR), 
median (quartiles)a

P-valueb

rs2229935

CC 203 (57.2) 0.100 (0.000 - 0.301) Reference

CT 132 (37.2) 0.079 (0.000 - 0.198) 0.12

TT 20 (5.6) 0.085 (-0.075 - 0.273) 0.50

CT or TT 152 (42.8) 0.079 (0.000 - 0.198) 0.11

rs2247383

CC 123 (35.2) 0.097 (-0.077 - 0.273) Reference

CT 169 (48.4) 0.097 (0.000 - 0.242) 0.94

TT 57 (16.3) 0.090 (-0.064 - 0.238) 0.69

CT or TT 226 (64.8) 0.097 (0.000 - 0.242) 0.84

rs2070296

GG 270 (71.6) 0.100 (0.000 - 0.287) Reference

GA 98 (26.0) 0.079 (-0.097 - 0.195) 0.04

AA 9 (2.4) 0.000 (-0.097 - 0.040) 0.04

GA or AA 107 (28.4) 0.040 (-0.097 - 0.184) 0.01

rs2804495

TT 167 (49.1) 0.098 (0.000 - 0.240) Reference

TG 147 (43.2) 0.097 (0.000 - 0.273) 0.74

GG 26 (7.6) 0.138 (-0.088 - 0.300) 0.84

TG or GG 173 (50.9) 0.097 (0.000 - 0.279) 0.72

SNP, single nucleotide polymorphism; N, number; VA, visual acuity; logMAR=logarithm of the 

Minimum Angle of Resolution.
a   Change in VA after 3 months (logMAR) was calculated in the following manner:  

VA prior to treatment - VA after 3 months of treatment.
b   P-values were calculated using Mann-Whitney U tests.

Results

Demographics and ophthalmological details of the patients are described in Table 1. Older 

age at first injection (P=0.01), having a better baseline VA (P<10-3) and having diabetes 

mellitus (P=0.02) were associated with worse response after 3 months of treatment (see 

Table, Supplemental digital content 2, http://links.lww.com/FPC/A913, which describes 

the results of the association tests). The type of choroidal neovascularization showed 

a trend towards statistical significance (P=0.06). These baseline variables were not 

associated with the SNPs of interest (P>0.05, lowest P=0.22) (see Table, Supplemental 

digital content 3, http://links.lww.com/FPC/A914, which describes the results of the 

association tests).

Over 90% of patients were successfully genotyped for SNPs rs2229935, rs2247383, 

rs2070296 and rs2804495 (Table 2). None of the SNPs showed deviations from Hardy-
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Weinberg equilibrium in the study cohort (P=0.81, 0.93, 0.98 and 0.41 respectively). The 

GA or AA genotypes of SNP rs2070296 were found to be associated with a significantly 

reduced improvement in VA after 3 months (P=0.01) compared with the GG genotype, 

showing a linear trend for the three genotype groups (Fig. 1a). The SNPs rs2229935, 

rs2248383 and rs2804495 were not found to be associated with treatment response  

(Table 2). 

figure 1   Effect of genetic variants in NRP1 and KDR on response to ranibizumab treatment in 
nvAMD. 

Change in visual acuity after 3 months of ranibizumab treatment stratified by NRP1 rs2070296 

genotype. (A) Change in visual acuity after 3 months of ranibizumab treatment stratified by the 

number of risk alleles in NRP1 rs2070296 (B) and KDR rs4576075 (T).  

The median change in visual acuity for each group is depicted in both figures.

logMAR, logarithm of minimal angle of resolution; nvAMD, neovascular age-related macular 

degeneration; VA, visual acuity.

A combined analysis of NRP1 rs2070296 and the previously associated SNP rs4576072 in 

KDR12 revealed a decrease in the change in VA after 3 months depending on the number of 

risk alleles (Fig. 1b). Patients who carried two risk alleles responded significantly worse to 

therapy than did carriers of one or zero allele (median of 0.090 logMAR or 4.5 ETDRS letters 

gained vs. 0.196 logMAR or 10 ETDRS letters gained, P=0.03), and carriers of more than 2 

alleles had even worse response rates (median of 0.020 logMAR or 1 ETDRS letter gained, 

P=3x10-3) (Fig. 1B and Table 3).

Besides the variability in treatment regimens after the first loading injections, we evaluated 

whether the effect of rs2072096 in NRP1 remained significant after 6 and 12 months 

of treatment. This SNP was not associated with the change in VA after 6 and 12 months  

A

NRP1 rs2070296 G>A

Δ
VA

 a
ft

er
 3
 m

on
th

s 
(L

og
M

A
R

)

Δ
VA

 a
ft

er
 3
 m

on
th

s 
(L

og
M

A
R

)

number of risk alleles in
NRP1 rs2070296 and KDR rs4576075

B



genetic biomarkers for anti-vegf therapy 49

(Table 4). However, the combined effect of this SNP in NRP1 and rs4576072 in the KDR 

gene did influence long term response (Fig. 2 and Table 5).

table 3   Combined effect of the risk alleles in NRP1 rs2070296 (A) and KDR rs4576072 (T) on 
response to ranibizumab treatment.  

Number of risk alleles N (%) ΔVA after 3 months (logMAR), 
median (quartiles)a

P-valueb

<2 79 (22.4) 0.196 (0.000 – 0.321) Reference

2 201 (56.9) 0.090 (0.000 – 0.204) 0.03

>2 73 (20.7) 0.020 (-0.097 – 0.180) 3x10-3

N, number of patients; VA, visual acuity; logMAR, logarithm of the Minimum Angle of Resolution.
a   Change in VA after 3 months (logMAR) was calculated in the following manner:  

VA prior to treatment - VA after 3 months of treatment.
b  P-values were calculated using Mann-Whitney U tests.

 

figure 2   Effect of genetic variants in NRP1 and KDR on long term response to ranibizumab 

treatment in nvAMD.

(A) Change in visual acuity after 6 months of ranibizumab treatment stratified by the number of risk 

alleles in NRP1 rs2070296 (A) and KDR rs4576075 (T). (B) Change in visual acuity after 12 months 

of ranibizumab treatment stratified by the number of risk alleles in NRP1 rs2070296 (A) and KDR 

rs4576075 (T).  

The median change in visual acuity for each group is depicted in both figures. 

logMAR, logarithm of minimal angle of resolution; nvAMD, neovascular age-related macular 

degeneration; VA, visual acuity.
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table 4   Association of genotypes in rs2070296 NRP1 with long term response to ranibizumab 
treatment.

 
ΔVA after 6 months (logMAR) ΔVA after 12 months (logMAR)

SNP N (%) Median (quartiles)a P-valueb N (%) Median (quartiles)a P-valueb

rs2070296

GG 188 (71.8) 0.097 (-0.092 - 0.257) Reference 180 (75.0) 0.078 (-0.120 - 0.218) Reference

GA 67 (25.6) 0.040 (-0.080 - 0.194) 0.38 53 (22.1) 0.020 (-0.222 - 0.252) 0.64

AA 7 (2.7) 0.000 (-0.398 - 0.090) 0.21 7 (2.9) -0.097 (-0.400 - 0.100) 0.33

GA or AA 74 (28.2) 0.020 (-0.098 - 0.194) 0.25 60 (25.0) 0.010 (-0.222 - 0.203) 0.46

VA, visual acuity; logMAR = logarithm of the Minimum Angle of Resolution; SNP, single nucleotide 

polymorphism; N, number.
a   Change in VA after 6 or 12 months (logMAR) was calculated in the following manner: VA prior to 

treatment - VA after 6 or 12 months of treatment.
b  P-values were calculated using Mann-Whitney U tests.

 

 

table 5   Combined effect of the risk alleles in NRP1 rs2070296 (A) and KDR rs4576072 (T) on 

long term response to ranibizumab treatment. 

Number 
of risk 
alleles

N (%) ΔVA after 6 months 
(logMAR), median 

(quartiles)a

P-valueb N (%) ΔVA after 12 months 
(logMAR), median 

(quartiles)a

P-valueb

<2 57 (22.7) 0.164 (-0.010 - 0.301) Reference 47 (20.4) 0.100 (-0.079 - 0.301) Reference

2 140 (55.8) 0.031 (-0.097 – 0.203) 0.03 137 (59.7) 0.000 (-0.199 - 0.201) 0.03

>2 54 (21.5) 0.034 (-0.209 – 0.184) 0.04 46 (20.0) 0.000 (-0.325 - 0.200) 0.04

N, number of patients; VA, visual acuity; logMAR, logarithm of the Minimum Angle of Resolution.
a   Change in VA after 6 and 12 months (logMAR) was calculated in the following manner: VA prior to 

treatment - VA after 6 or 12 months of treatment.
b  P-values were calculated using Mann-Whitney U tests.

Discussion

We evaluated the role of four SNPs located in NRP1 (rs2229935, rs2247383, rs2070296 

and rs2804495) in response to anti-VEGF treatment. The SNP rs2070296 was found to be 

significantly associated with a fewer gain in letters. Depending on the genotype, patients 

showed a different response following an additive model in which the minor allele (A) leads 

to worse response to treatment. In median, the nine patients that carried the homozygous 

AA genotype didn’t improve their VA and performed five ETDRS letters (one line) worse 

than the homozygous GG group. As a recent study showed that most patients perceive one 

line of the ETDRS chart as an improvement28, this difference could be clinically relevant. 

This effect was not seen after 6 and 12 months of treatment. Nevertheless, the dilution of 

the effect seen in the change in VA after the loading dose of three ranibizumab injections, 
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could be due to variability in the treatment regime and progression of the disease, which 

makes the comparison of the long term response difficult. 

We defined treatment response as change in VA after three consecutive loading injections 

compared with baseline. VA is an important functional outcome measure, which is most 

relevant for patients, and therefore, it has been extensively used to evaluate treatment 

response in nvAMD7,12,29-36. Most patients achieve the largest change in VA after the three 

first monthly injections3 and this time interval can be predictive of long-term response37. 

Therefore, this finding not only expands the knowledge of the mechanisms that underlie 

the variability in the response, but also could be implemented in future prediction models. 

Despite that, we encourage the evaluation of the effect of this SNP using also anatomic 

features defined by OCT. The patients in our study cohort were treated between 2007 

and 2009, and at that time, OCT scans were not implemented routinely during treatment 

regimes.

Although our study detected a significant association of rs2070296 with anti-VEGF 

treatment response, further studies are required to confirm our findings and to determine 

whether this SNP or other genetic variants in NRP1 are driving the effect. A more extensive 

analysis of additional genetic variants in NRP1 could reveal other SNPs associated with 

variability in the response. Furthermore, examination of low frequency and rare variants 

could reveal variants with a higher impact on the trait and major clinical relevance. 

The NRP1 gene has also been implicated in treatment response to anti-VEGF therapy in 

cancer. A SNP in the 3’UTR of NRP1 has been associated with better progression-free 

survival in recurrent ovarian cancer treated with bevacizumab (Avastin; Genentech Inc., 

San Francisco, California, USA)38, an anti-VEGF drug also used off-label for the treatment 

of nvAMD. NRP1 is expressed in endothelial cells and upregulated in numerous tumor cell 

types39-48, which has been associated with poorer outcomes in several cancers such as 

breast cancer42, osteosarcoma46 and nasopharyngeal carcinoma48. Therefore, the interest in 

developing new therapies targeting NRP1 in cancer is increasing49. Moreover, an improved 

effect of an anti-VEGF drug combined with anti-NRP1 antibodies has been described in 

tumor treatment.50 In addition, NRP1 has been proposed as a potential biomarker for 

treatment response in advanced gastric cancer treated with bevacizumab26. In a recent 

study, Raimondi and colleagues described that NRP1 promotes angiogenesis in a VEGFR2/

VEGFA independent manner. In this novel mechanism, NRP1 forms a complex with ABL1 

that leads to the activation of paxillin in a fibronectin dependent manner which enhanced 

motility in vitro and angiogenesis in vivo. Moreover, in a mouse model of oxygen-induced 

retinopathy, treatment with imatinib (an ABL1 inhibitor used for the treatment of leukemia) 

reduced angiogenesis. Consequently, imatinib was proposed as a new therapy for nvAMD 

targeting NRP125. 

The wide range of response to anti-VEGF therapy observed in nvAMD patients has drawn 

much attention in the pharmacogenetic research field. The findings described in this study, 

together with the findings of Hermann et al.12 and Lotery et al.9, suggest that variants in 
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components of the neovascularization pathways play an important role in treatment 

response to anti-VEGF therapy in AMD. The study by Hermann et al. showed that rs4576072 

in KDR is associated with response after 12 months of treatment12. In the current study we 

demonstrated a significant cumulative effect of this SNP and SNP rs2070296 in NRP1 in 

the response to ranibizumab treatment after the three loading injections, and also after 

6 and 12 months of treatment. This finding is specifically interesting for the development 

of prediction models based on relevant clinical parameters, environmental and genetic 

factors, which would allow patients to be grouped for different regimen doses or therapies.

In summary, our findings suggest that genotyping of SNPs in NRP1, in combination with 

SNPs in other genes as KDR, could be used as a rapid preclinical tool for selection of the 

optimal treatment for individual patients, which besides anti-VEGF treatment could also 

involve targeting of NRP1. In the future, genetic testing of such variants may help to predict 

outcome of nvAMD treatment, and to tailor medical care to individual needs.
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Supplemental content

supplemental digital content table 1   Chromosomal location of the NRP1 SNPs and primers 
used for genotyping.

SNP Chromosomal location
(chr, bp)a

Primers KASPar sequencing Primers Sanger sequencing

rs2229935 10, 33510663 Primer Allele FAM (C): AGCTTACCTGT-
TATCTTGCAACCG
Primer Allele HEX (T): CAGCTTACCTGT-
TATCTTGCAACCA
Primer Common: GGGAAACTGG-
CATATCTATGAGATTTGAA

NA

rs2247383 10, 33489052 Primer Allele FAM (C): CAGAATTGGAG-
GGAGGCCAGG
Primer Allele HEX (T): CAGAATTGGAG-
GGAGGCCAGA
Primer Common: CCACTGGGAA-
CAGAACGCTAATGTA

NA

rs2070296 10, 33552695 Primer Allele FAM (A): CCAGGATA-
ATCTCTGACATCTTTGGT
Primer Allele HEX (G): CAGGATA-
ATCTCTGACATCTTTGGC
Primer Common: ATCCCAACAGCCTT-
GAATGCACTTATATT

Fw: CTGAACTTGACTTTCCATACCC
Rv: TGCTTTGTTTTCCAGTGTCC

rs2804495 10, 33612500 Primer Allele FAM (G): ACTACTAACTGC-
CCTAGATACCAG
Primer Allele HEX (T): CACTACTAACTG-
CCCTAGATACCAT
Primer Common: CTCTTCTCTGGTT-
GATTGGCCTGTA

NA

SNP, single nucleotide polymorphism; chr, chromosome; bp, base pair; NA = not applicable;  

Fw, forward; Rv, reverse.                                               
a  The chromosomal location is based on the assembly of February 2009 (GRCh37/hg19).51
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supplemental digital content table 2   Influence of the baseline variables on response to 
ranibizumab treatment. 

    
ΔVA after 3 months (logMAR)a

 P-valueb Correlation coefficient/ median (quartiles)

Demographics

 Age at first injection 0.01 -0.130

 Gender 0.38 Female: 0.079 (0.000 - 0.222)

Male: 0.100 (-0.020 - 0.300)

Disease history

Hypertension (n=259)c 0.91 Yes: 0.104 (0.000 - 0.250)

No: 0.079 (0.000 - 0.301)

Diabetes mellitus (n=259)c 0.02 Yes: 0.000 (-0.204 - 0.176)

No: 0.107 (0.000 - 0.301)

Other environmental factors

BMI (kg/m2) (n=258)c 0.22 -0.077

Ophthalmological details

 Baseline VA (logMAR) <10-3 0.195

 Change in VA after 3 months (logMAR) NA NA

 Type of CNV (n=335)c 0.06 Occult with no classic: 0.097 (0.000 - 0.204)

RAP: 0.107 (-0.048 - 0.301)

Minimally classic: 0.000 (-0.099 - 0.176)

Predominantly classic: 0.100 (0.045 – 0.311)

 Lesion size (DA) (n=285)c 0.23 <2: 0.100 (-0.015 – 0.296)

2-4: 0.090 (0.000 – 0.222)

4-6: 0.100 (0.000 – 0.300)

>6: 0.000 (-0.097 – 0.176)

VA, visual acuity; logMAR = logarithm of the Minimum Angle of Resolution; NA, not applicable; n, 

number of patients; CNV, choroidal neovascularization; RAP, retinal angiomatous proliferation; DA, 

disk areas.
a   Change in VA after 3 months (logMAR) was calculated in the following manner: VA prior to 

treatment - VA after 3 months of treatment.
b   P-values were calculated using Spearman correlations for the independent continuous variables 

and Kruskal-Wallis tests or Mann-Whitney U tests for the categorical variables.
c  For the remaining patients no data were available.
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supplemental digital content table 3   Influence of NRP1 SNPs on potential confounding 
factors.

Potential confounding factors of ΔVA after 3 months (logMAR)

 Age at first injection 
(years)

Baseline VA  
(logMAR)

Diabetes mellitus Type of CNV

 P-valuea P-valuea P-valuea P-valuea

rs2229935 0.23 0.23 0.38 0.22

rs2247383 0.89 0.30 0.37 0.93

rs2070296 0.50 0.34 0.30 0.30

rs2804495 0.85 0.47 0.79 0.39

VA, visual acuity; logMAR, logarithm of the Minimum Angle of Resolution; CNV, choroidal 

neovascularization.
a   P-values were calculated using Kruskal-Wallis tests for continuous outcome variables and test for 

categorical outcome variables.
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Abstract

Pooled DNA based GWAS to determine genetic association of SNPs with visual acuity (VA) 

outcome in anti-vascular endothelial growth factor (anti-VEGF) treated neovascular age-

related macular degeneration (nAMD) patients. We performed pooled DNA based GWAS 

on 285 anti-VEGF treated nAMD patients using high density Illumina 4.3M array. Primary 

outcome was change in VA in Early Treatment Diabetic Retinopathy Study (ETDRS) letters 

after 6 months of anti-VEGF treatment (patients who lost ≥5 ETDRS letters classified as non-

responders and all remaining classified as responders). GWAS analysis identified 44 SNPs 

of interest: 37 with strong evidence of association (p<9x10-8), 2 in drug resistance genes 

(p<5x10-6) and 5 nonsynonymous changes (p<1x10-4). In the validation phase, individual 

genotyping of 44 variants showed three SNPs (rs4910623 p=5.6x10-5, rs323085 p=6.5x10-4 

and rs10198937 p=1.30x10-3) remained associated with VA response at 6 months. SNP 

rs4910623 also associated with treatment response at 3 months (p=1.5x10-3). Replication 

of these three SNPs in 376 patients revealed association of rs4910623 with poor VA 

response after 3 and 6 months of treatment (p=2.4x10-3 and p=3.5x10-2, respectively). 

Meta-analysis of both cohorts (673 samples) confirmed association of rs4910623 with 

poor VA response after 3 months (p=1.2x10-5) and 6 months (p=9.3x10-6) of treatment in 

nAMD patients.
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Background

Age-related macular degeneration (AMD) is a common complex progressive neuro-

degenerative disease in the elderly, which can lead to irreversible severe vision loss1. Vision 

is threatened when AMD advances to its late sequelae of either geographic atrophy (GA) 

or choroidal neovascularization (CNV) also known as nAMD2. One of the most important 

regulators of the neovascularization process is vascular endothelial growth factor A 

(VEGF-A)3. Currently, the most effective treatment for nAMD is inhibition of VEGF through 

the use of recombinant, humanised anti-VEGF monoclonal antibodies such as ranibizumab 

(Lucentis), aflibercept (Eylea) or off-label bevacizumab (Avastin). These drugs have been 

shown in multiple studies4-8 to be efficacious in improving vision, but a varying response 

to anti-VEGF treatment has been observed. Approximately 10% of patients showed no 

improvement in visual acuity (VA) (loss of > 15 ETDRS letters), and exhibited a continuous 

decline in VA over two years of treatment similar to that previously reported for both 

ANCHOR and MARINA trials5,6. This range of variable VA response may in part be explained 

by genetic predisposition. 

It is well established that genetic factors are associated with risk of developing AMD9. 

Several of the genes associated with AMD are also genes encoding components of the 

neovascularization pathway and have previously been investigated in variation to anti-

VEGF treatment response studies8,10-12. However, conflicting findings have been reported 

thus far.

The current study aimed to investigate associations with genetic variants in a hypothesis-

free manner using a genome-wide association study (GWAS). We investigated whether 

genetic factors influencing ranibizumab treatment outcomes in nAMD patients could 

be identified through the initial use of a GWAS pooling strategy followed by a technical 

validation and subsequent replication in an independent cohort.

Results 

The objective of this study was to investigate whether genetic variants could be identified 

that might influence the treatment outcome after anti-VEGF treatment in nAMD patients. 

The demographic characteristics of patients of the Melbourne discovery cohort and 

the replication cohort are shown in Table 1. A total of 297 patients from the Melbourne 

discovery cohort (285 individuals used initially in the pooled GWAS, plus an additional 

12 ranibizumab-treated AMD patients were included, giving a total of 297 individuals) 

and 376 patients from the replication cohort met the study inclusion criteria with a mean 

age of 79.2 years and 77.1 years, respectively. A mean baseline VA (at the time of first 

injection) of 51 ETDRS letters was observed in the Melbourne discovery cohort and 52.6 

ETDRS letters in the replication cohort (Table 1). In the Melbourne discovery cohort, sex, 

smoking, type of lesion, size of CNV and number of injections up to 6 months of treatment, 
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showed no significant association with change in VA at 3 and 6 months of treatment 

(p>0.05). Baseline VA showed a consistent negative association with change in VA at 3 and 

6 months (p<0.001) in both the Melbourne and replication cohort. In addition, age at the 

time of nAMD treatment was associated with change in VA at 3 months (p<0.001) but not at 

6 months in the replication cohort (p>0.05) (Supplementary Table S1). Both the discovery 

and replication cohort have similar demographic and clinical characteristics except for the 

size of the CNV. 

table 1   Patient demographics and clinical characteristics of the Melbourne discovery cohort 
and the replication cohorts

Discovery Cohort
(Melbourne) (n=297)

Replication Cohort 
(Nijmegen/Cologne/Montreal) 
(n=376)

Sex

   Female 181 (60.9%) 214 (56.9%)

Male 116 (39.1%) 162 (43.1%)

Age (years), mean±SD
Range

79.2±7.1
(53-102)

77.1±7.4
(53-97)

Baseline Visual Acuity (ETDRS letters),
mean ±SD
Range

51.0±17.5
(2-88)

52.6±18.0∞

(1-85)

Type of lesion
Predominantly Classic

Non-Predominantly Classic
Missing Data

 
23%
77%
11% 

19.4%
69.7%
10.9%

*+Size of CNV
< 2 optic-disc area
> 2 Optic-disc area

Missing Data

44% 
29%
27%

24.5%
51.3%
24.2%

Number of Injections at 6 months, 

mean ±SD 4.7 ± 1.3 NA

^Number of Responders/Non-responders
                         3 Month

                          6 Month
84%/16%
79%/21%

82%/18%
76%/24%

SD = Standard Deviation, ETDRS = Early Treatment Diabetic Retinopathy Study, *In the discovery 

cohort, one optic-disc area is equal to 2.54 mm2, based on an optic disc diameter of 1.8mm,  
+ In the replication cohort optic disc measurement is based on each patient optic disc area, NA 

= Not available, ^Non-responders classified as those who showed loss of ≥5 EDTRS letters VA 

from baseline; all remaining patients were classified as responders. ∞ 303 Snellen visual acuity 

values were first converted into approximate ETDRS letters using a chart that has all three 

measurement to read the equivalent number of ETDRS letters. It is based on formula ETDRS letters = 

85-((-(logSnellen))/0.02)40.
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figure 1   Manhattan plot of SNPs tested in a pooled GWAS for response to anti-VEGF 
treatment.

The X-axis indicates the chromosomal position of the SNPs and the Y-axis shows their corresponding 

P-value (-log
10

). The red line indicates the threshold for genome-wide significance (p<5x10-8) and the 

blue line indicates the threshold for suggestive association (p<1x10-5).

First Phase – Genome wide association Study

First phase results from the pooled GWAS are shown in a Manhattan plot in Figure 1.   

A total of 44 SNPs from the pooled GWAS were selected for technical validation through 

independent individual genotyping on the basis of a genome-wide significant p-value  

(37 SNPs, p<9x10-8), SNPs in genes involved in drug resistance response (‘pharmagenes’) 

(2 SNPs, p<5x10-6) and SNPs leading to a missense change in a coding region of a gene (5 

SNPs, p<1x10-4) (Table 2). 

Second Phase – Validation 

In the second phase, all 44 SNPs from the first phase were genotyped in 297 patients (the 

same cohort as in phase 1 but with the addition of 12 extra patient samples who became 

available between the time of phase1 and phase2). This individual genotyping confirmed 

the 3 SNPs (rs4910623, rs323085, rs10158937) to be significantly (p<0.05) associated 

with response at 6 months of ranibizumab treatment after Bonferroni correction for 44 

independent tests. SNP rs4910623 showed the highest significance (p=5.7x10-5), in which 

the ‘G’ risk allele led to a worse response (OR=2.58 [95% CI=1.63-4.10]). While the C allele 

of both rs323085 and rs10158937 (p=6.5x10-4 and p=1.30x10-3, respectively) appeared 

protective (OR=0.16 [95% CI= 0.06-0.46] and OR=0.32 [95% CI=0.17-0.65], respectively) 

(Table 3).
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table 2   Selected SNPs from the pooled GWAS comparing responders and non-responders 
at 6 months ranibuzimab treatment and validation results using an independent 
genotyping technique in the Melbourne discovery cohort

SNP Chr. Position+ Gene Effect 
Allele

Pooled GWAS Technical Replication 

Pooled GWAS SNPs reaching P ≤ 9x10-8 P-Value OR  P-Value OR(95% CI)

rs4910623 11 4389639 OR52B4 G 3.69x10-9 3.14 5.65x10-5 2.58 (1.63-4.10)

rs323085 18 49290621 LOC100287225 C 3.29x10-8 0.22 6.53x10-4 0.16 (0.06-0.46)

rs10158937 1 66144876 LEPR C 5.36x10-8 0.28 1.30x10-3 0.32 (0.17-0.65)

rs2475779 5 157541895 CLINT1 T 1.59x10-9 0.29 1.36x10-6 0.40 (0.23-0.70)

rs59741976 3 74593662 CNTN3 T 2.65x10-8 0.32 1.84x10-3 0.31 (0.15-0.65)

rs4655583 1 66155407 LEPR A 1.37x10-8 0.28 2.38x10-3 0.34 (0.17-0.69)

rs7857431 9 132529504 PTGES T 3.36x10-8 0.25 4.58x10-6 0.12 (0.03-0.53)

rs794009 4 40139719 N4BP2 A 6.91x10-8 0.35 5.47x10-3 0.40 (0.22-0.77)

rs10234065 7 19547138 TWISTNB T 1.37x10-8 0.31 5.61x10-3 0.13 (0.03-0.56)

rs1447830 3 74613171 CNTN3 T 7.56x10-9 0.30 5.63x10-3 0.35 (0.17-0.74)

rs2110470 7 19509870 TWISTNB A 3.35x10-8 0.35 5.65x10-6 0.40 (0.21-0.77)

rs1892535 1 66097181 LEPR T 6.50x10-8 0.31 6.50x10-3 0.38 (0.19-0.77)

rs1573317 18 382268 COLEC12 T 1.11x10-9 0.27 7.60x10-3 0.36 (0.18-0.77)

rs13154178 5 42828101 SEPP1 A 2.09x10-8 0.36 8.20x10-3 0.49 (0.30-0.83)

rs4909963 11 11119228 GALNTL4 T 9.85x10-9 0.24 8.32x10-3 0.20 (0.06-0.67)

rs79966776 3 74582701 CNTN3 A 1.61x10-8 0.32 9.72x10-3 0.42 (0.22-0.81)

rs510549 3 111700305 ABHD10 T 1.60x10-9 0.34 1.07x10-2 0.53 (0.33-0.87)

rs6917419 6 27243480 PRSS16 T 3.80x10-8 0.33 1.41x10-2 0.32 (0.13-0.80)

 rs12117294 1 209814879 LAMB3 T 1.89x10-8 0.34 1.84x10-2 0.46 (0.25-0.88)

rs10767060 11 23468443 LOC100500938 T 8.72x10-8 0.38 2.23x10-2 0.58 (0.37-093)

rs17770298 9 101208288 GABBR2 A 7.44x10-9 0.18 2.40x10-2 0.19 (0.05-081)

rs11131078 3 7548067 GRM7 T 3.23x10-9 0.13 2.63x10-2 0.58 (0.37-0.94)

rs292998 5 58032485 RAB3C G 3.86x10-9 0.38 2.94x10-2 0.61 (0.39-0.95)

rs772433 2 7838257 LOC339788 A 5.06x10-8 0.36 4.24x10-2 0.62 (0.40-0.98)

rs3806586 2 128433897 LIMS2 T 1.16x10-9 0.26 4.96x10-2 0.52 (0.28-1.00)

rs9644866 9 2290590 SMARCA2 T 3.72x10-9 0.17 5.60x10-2 0.63 (0.40-1.01)

rs10050214 4 78733015 CNOT6L T 4.22x10-8 0.38 6.35x10-2 0.40 (0.28-1.04)

rs12638297 3 29748169 RBMS3 T 4.29x10-8 0.31 6.40x10-2 0.50 (0.25-1.04)

rs4449299 3 14598965 GRIP2 A 5.50x10-8 0.39 8.79x10-2 0.64 (0.39-1.07)

rs1353892 12 90716019 C12orf37 T 1.06x10-9 0.34 9.71x10-2 0.67 (0.42-1.07)

rs659910 11 131769454 NTM T 1.27x10-8 0.39 1.67x10-1 0.71 (1.00-1.03)

rs10141328 14 96752555 ATG2B C 7.78x10-8 0.16 1.90x10-1 0.73 (0.47-1.16)

rs9323992 14 98649816 C14orf64 T 4.59x10-8 0.38 5.14x10-1 0.84 (0.50-1.41)

rs7432690 3 77450363 ROBO2 T 9.91x10-10 0.14 6.81x10-1 1.09 (0.72-1.67)

rs141659302 11 128802177 TP53AIP1 T 3.79x10-8 0.41 9.99x10-1 0.74 (0.00-0.00)

rs7320683 13 71787948 DACH1 A 5.38x10-8 2.86 1.00 1 (-)

rs291477 3 73807858 PDZRN3 G 1.85x10-10 2.91 1.00 1 (-)

Pooled GWAS SNPs in known pharmagenes showing suggestive significance

rs3804938 3 7550294 GRM7 C 1.35x10-7 0.13 1.01x10-2 0.54 (0.34-0.87)

rs4148732 7 87234049 ABCB1 G 2.72x10-6 0.22 1.00x10-3 0.08 (0.02-0.38)
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For technical replication P values were calculated using logistic regression adjusted for baseline 

visual acuity, OR = odds ratio, SNP: single nucleotide polymorphism, Chr: chromosome, BP: 

base pair position on chromosome. SNPs that remained significantly associated after Bonferroni 

correction for multiple testing are highlighted in bold.+ Representing position from phase 3 1000G 

CEU reference panel.  

table 3   Genotypic distribution and allele frequency of rs4910623, rs323085 and rs10158937 
and association with VA response at six and three months of anti-VEGF treatment in 
the Melbourne discovery cohort

Definition of response was the same as in the pooled GWAS: Non-responders are patients who lost 

≥ 5 ETDRS letters and the remainder were classified as responders P-Value: Calculated using logistic 

regression adjusted for baseline visual acuity, OR = odd ratio, representing trend per copy effect of 

risk or minor allele on VA outcome, highlighted in bold for each SNP, CI: Confidence Interval,  

* Genotype frequency A1A1/A1A2/A2A2, +Allele frequency A1/A2.

 

Since a loading dose of three monthly injections is prescribed to all patients, we determined 

if the effect of these three selected SNPs in treatment outcome could be seen at this time 

point. The G allele of rs4910623 showed an association with worse outcome at three 

months of treatment (p=1.5x10-3, OR=2.23 [95% CI=1.36-3.66]).

SNP rs10158937 also showed an association with the C allele leading to a better response 

after 3 months (p=9.0x10-3, OR=0.36 [95% CI=0.17-0.77]), consistent with the six months 

result. However rs323085 did not show significant association at three months (Table 3).

Pooled GWAS SNPs leading to a missense change in gene

rs3877899 5 42801268 SEPP1 A 9.02x10-7 0.36 1.15x10-3 0.34 (0.18-0.66)

rs34677 5 33998768 AMACR T 3.22x10-5 0.35 3.0x10-3 0.26 (0.11-064)

rs3784588 15 31294654 TRPM1 T 4.73x10-5 0.27 9.96x10-1 0.04 (1.00-1.03)

rs17659179 18 47511113 MYO5B A 8.20x10-5 0.28 4.75x10-2 0.29 (0.09-0.99)

rs17673268 9 368128 DOCK8 T 1.54x10-5 0.41 2.44x10-1 0.63 (1.00-1.03)

6 Month 

SNP A1 A2 Genotype frequency * Allele frequency + P-Value OR 95% CI

Responders Non-responders Responders Non-Responders

rs4910623 G A 0.23/0.52/0.25 0.54/0.36/0.10 0.49/0.51 0.72/0.28 5.7x10-5 2.58 (1.63-4.10)

rs323085 C T 0.30/0.28/0.69 0/0.70/0.93 0.17/0.83 0.03/0.97 6.5x10-4 0.16 (0.06-0.46)

rs10158937 C A 0.06/0.33/0.61 0/0.17/0.83 0.23/0.77 0.08/0.92 1.3x10-3 0.32 (0.17-0.65)

3 Month

rs4910623 G A 0.25/0.51/0.24 0.52/0.37/0.11 0.51/0.49 0.71/0.29 1.5x10-3 2.23 (1.36-3.66)

rs323085 C T 0.02/0.25/0.73 0.02/0.22/0.76 0.14/0.86 0.13/0.87 0.81 0.92 (0.47-1.81)

rs10158937 C A 0.06/0.33/0.62 0.02/0.13/0.85 0.22/0.78 0.09/0.91 9.0x10-3 0.36 (0.17-0.77)
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Third Phase – Replication

In the third phase, we analysed the association of the three SNPs with treatment outcome 

in a replication cohort of European descent, consisting of 215 ranibizumab-treated AMD 

patients following pro re nata treatment protocol. The effect of rs4910623 replicated at six 

months of treatment (p=3.5x10-2, OR=1.71 [95% CI=1.04-2.80]). At the 3 month treatment 

time point all replication patients were included in the analysis (n = 376) as they were all 

treated in a similar manner to the discovery cohort. The effect of this SNP on treatment 

response was also similar at this time point (p=2.4x10-3, OR=1.8 [95% CI=1.24-2.71]). 

SNPs rs323085 and rs10158937 were not associated with treatment response in the 

replication cohort (Table 4).

table 4   Genotypic distribution and allele frequency of rs4910623, rs323085 and rs10158937 
and association with VA response at six and three months of anti-VEGF treatment in 
the replication cohort

Definition of response was the same as in the pooled GWAS: Non-responders are patients who have 

lost ≥ 5 ETDRS letters and the remainder were classified as responders P-Value: Calculated using 

logistic regression adjusted for baseline visual acuity and age, OR = odd ratio, representing trend 

per copy effect of risk or minor allele on VA outcome, highlighted in bold for each SNP, CI: Confidence 

Interval, * Genotype frequency A1A1/A1A2/A2A2, + Allele frequency A1/A2.++ In replication cohort pr 

re nata treated patients included n = 215.

 

The frequency of rs4910623 risk allele (G) in the Melbourne discovery cohort was 71% and 

72% for the non-responder group (3 and 6 months respectively) in comparison to 51% and 

49% in the responders group (3 and 6 months, respectively) (Table 3). A similar change 

in allele frequency was also seen in the replication cohort with the frequency of the risk 

allele G being 62% and 38% in the non-responder group compared to 48% and 52% in 

the responders group (3 and 6 months (pro re nata patients), respectively) (Table 4). The 

overall distribution of change in VA corresponding to each genotype of rs4910623 in both 

cohorts is shown in Figure 2. 

6 Month 

SNP A1 A2 Genotype frequency * Allele frequency + P-Value OR 95% CI

Responders Non-responders Responders Non-Responders

rs4910623 G A 0.24/0.48/0.28 0.34/0.54/0.12 0.48/0.52 0.62/0.38 3.5x10-2 1.71(1.04-2.80)

rs323085 C T 0.02/0.25/0.74 0.00/0.21/0.79 0.14/0.86 0.10/0.90 0.46 0.74(0.34-1.63)

rs10158937 C A 0.05/0.32/0.63 0.02/0.30/0.67 0.21/0.79 0.17/0.83 0.58 0.84(0.45-1.57)

3 Month

rs4910623 G A 0.22/0.50/0.28 0.39/0.46/0.15 0.47/0.53 0.62/0.38 2.4x10-3 1.83 (1.24–2.71)

rs323085 C T 0.03/0.24/0.73 0/0.23/0.77 0.15/0.85 0.11/0.89 0.34 0.74 (0.50–1.33)

rs10158937 C A 0.04/0.32/0.64 0.06/0.35/0.59 0.20/0.80 0.23/0.77 0.25 1.31 (0.83-2.06)
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figure 2   Mean change in visual acuity (VA) after three and also the six month time period 
(pro re nata treated only) of treatment stratified by rs4910623 genotype for the 
Melbourne discovery and replication cohorts.

Vertical lines represent the standard error (SE) of the mean change in VA.

Meta-Analysis

A meta-analysis of SNP rs4910623 in both the Melbourne discovery cohort and the 

replication cohort showed differences in allele distribution between responders and non-

responders at 3 months (p=1.21x10-5) and 6 months (p=9.3x10-6) of treatment (only pro 

re nata patients from the replication cohort were included) indicating the influence of 

rs4910623 on outcome of ranibizumab treatment in AMD patients (Table 5).

table 5   Meta-analysis of the Melbourne discovery cohort and the replication cohort for SNP 
rs4910623 at 3 and 6 months of ranibizumab treatment in AMD patients

Meta-analysis was performed using METAL.* At 6 month only pro re nata treated patient were 

included from replication cohort. 

Meta-Analysis 

  3 Month 6 Month*

SNP Gene A1 A2 P-Value N  Direction Z score P-Value  N Direction Z score  

rs4910623 OR52B4 G A 1.2x10-5 673 ++ 4.37 9.3x10-6 512    ++ 4.43

Melbourne discovery cohort Replication cohort
Vi

su
al

 A
cu

ity
 (V

A)
 C

hn
ag

e 
in

 E
TD

RS
 le

tt
er

s

Vi
su

al
 A

cu
ity

 (V
A)

 C
hn

ag
e 

in
 E

TD
RS

 le
tt

er
s

Time in MonthsTime in Months



70 chapter 2

Discussion

We sought to identify genetic variants that influence the ranibizumab treatment response 

in AMD. Using a pooled DNA GWAS approach, we identified SNP rs4910623 in the promoter 

region of the OR52B4 gene as being associated with a worse response to ranibizumab 

treatment. The association was validated in the same cohort through individual genotyping 

and confirmed in an independent replication cohort of AMD patients of European descent.  

Individuals carrying the risk allele G did not respond as well to ranibizumab treatment 

in either cohort after 3 or 6 months of treatment compared to those with the A allele. In 

the replication cohort we observed significant association of rs4910623 with change in 

VA in patients on pro re nata treatment regimen at 6 months. However, 47 patients from 

Montreal were not included in this analysis as they followed a treat-and-extend regimen. 

We undertook an additional sensitivity analysis where these 47 patients were included 

back into the 6 month analysis time point to provide a total of 262 patients. A similar 

trend for association of the G allele of rs4910623 was seen (p=4.6x10-2, OR=1.53 [95% 

CI=1.00-2.30]). As this group consisted of only 47 patients it was too small to draw any 

conclusive conclusions about whether this treatment protocol significantly affected the 

association of the G allele of rs4910623 with change in VA. In the meta-analysis we found 

significant association of rs4910623 patients with change in VA at both 3 and 6 months 

of treatment.

Two other SNPs, rs323085 and rs10158937, located 202 kb 3’ of LOC100287225 and 

42 kb at 3’ of LEPR gene respectively, did not remain associated with change in VA after 

replication. The inconsistency in the results for these two SNPs could indicate that they are 

false positive findings.

The baseline characteristics of both the Melbourne discovery and replication cohort did 

not reveal significant association with change in VA except for the baseline VA in both the 

discovery and replication cohort at 3 and 6 months of treatment. Baseline VA is negatively 

associated with change in VA, thus lower baseline VA will lead to a greater VA gain after 

treatment and vice versa. Therefore our findings are in agreement with the ANCHOR and 

MARINA trials where higher VA at baseline was associated with a smaller gain in VA at 

12 and 24 months of treatment, respectively13. This in-turn reflects a floor and ceiling 

effect of baseline VA14. Based on definition of response in our study it may have floor 

effect of baseline VA where individuals with higher baseline VA will have limited chance to 

gain vision after the treatment and vice versa. On the other hand, the baseline VA is also 

reported as one of the predictors of treatment outcome for ranibizumab15. To overcome 

these potential issues we incorporated baseline VA as a covariate into our analysis. 

However, there was a difference in baseline CNV size in the discovery and replication 

cohort. This is probably due to differences in measurements between the cohorts with 

the Melbourne discovery cohort being based on one optic-disc area is equal to 2.54 mm2, 

using an optic disc diameter of 1.8 mm whereas the replication cohort was based on each 

patient’s optic disc area.
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Using the HaploReg database16, SNP rs4910623 is predicted to alter the GATA and TCF4 

regulatory motifs 22 bp upstream of the OR52B4 gene. We also analysed the surrounding 

variants within its linkage disequilibrium (LD) block from the 1000 Genomes Project (r2 

= 0.8, 250 Kb). A number of the identified SNPs in this LD block are predicted to alter 

transcriptional binding sites (Supplementary Table S3). Thus, this region may play an 

important role in transcriptional regulation of this gene. 

The OR52B4 protein (Q8NGK2, UniprotKB accession number) consists of 314 amino acids 

(aa) and is a member of the G-coupled protein receptor (GPCR) family, which is located in 

the plasma membrane of the cell. Interestingly we find the conserved domain of Q8NGK217 

is a 7-transmembrane domain (7tm) region which is highly conserved with the 7tm_4 

super family domain of all the olfactory receptors (33-321 aa) and also the 7tm_1 domain 

of the 7 transmembrane receptor (rhodopsin family) (43-294 aa) as indicated using the 

NCBI Conserved Domain Database (CCD) (http://www.ncbi.nlm.nih.gov/Structure/cdd/

wrpsb.cgi?seqinput=NP_001005161.2). Rhodopsin is also member of GPCR family and 

it functions to capture photons of light and trigger the intra-cellular photo-transduction 

cascade, forming the molecular basis of vision18. GPCRs are highly selective and expressed 

in specific tissues and cells, making them particularly important as potential drug targets 

as >50% of therapeutic agents in the market target these receptors19.

To assess expression of the OR52B4 gene in human eye tissue, we used online resource: 

“The Ocular Tissue Database”20. Expression of the OR52B4 gene was present in the retina, 

optic nerve and choroid (Supplementary Table S4). The identification of olfactory gene 

expression in the eye is relatively new, but not surprising, as recently published expression 

profiling of a number of olfactory receptors (olfr) in mouse cornea, retina and choroid21. Their 

analysis of eye tissue expression confirmed the presence of many olfr, with one of them, 

olfr547 representing a homolog of the human OR52B4 gene (85% identity). Interestingly, 

olfr547 is a close relative of olfr78, which has recently been shown to function in regulation 

of blood pressure in smooth muscle cells22,23. Expression of genes in the olfr pathway in 

mouse ocular tissues is mediated by the olfaction specific Gα protein, localised in the 

nuclear layer of the retina and previously thought to be only expressed in the olfactory 

epithelium21. Moreover, olfactory genes have been shown to be associated with cancer 

and other blood diseases, suggesting expression and function of olfactory proteins in a 

number of different pathways23-25. Interestingly, another olfactory receptor (OR10J5) was 

recently reported by Kim and colleagues26 to control cell migration and phosphorylation 

of signaling during angiogenesis in mice. However the functional role of OR52B4 gene in 

angiogenesis needs to be elucidated and it has so far not previously been reported to be 

associated with pharmacogenetic response to AMD. 

Previous studies investigating genetic factors in anti-VEGF treatment outcome have 

assessed known AMD risk-associated genes and genes encoding components of the 

neovascularization pathway8,10-12. However, most of these studies have produced variable 

results; for example, the Y402H variant in the CFH gene has been associated with poor VA 

outcome in some studies but in other studies has been reported to show no association 
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with VA. Similarly, inconsistent results of association were reported for ARMS2/HTRA111,27. 

Our pooled GWAS findings did not identify genome-wide significance for SNPs in the 

previously associated known AMD risk genes CFH, VEGF-A, HTRA1/ARMS2 (Supplementary 

Table S5). These findings are in agreement with our previous study28 and the CATT study, 

the largest current cohort in which major AMD risk alleles have been investigated for 

treatment outcome following treatment with bevacizumab, where no association with the 

CFH, VEGF, VEGFR2 and HTRA1/ARMS2 genes was identified with anti-VEGF treatment 

response11,12. To date, only one prior GWAS has been undertaken to identify genetic risk 

factors for treatment response to AMD. That study was conducted on 65 patients and 

reported the SNP rs7607942 near the ERBB4 gene to be associated with poor VA outcome 

after 6 months of treatment, although this SNP did not reach genome-wide significance 

(uncorrected p=6.692x10-6)29. Major drawbacks of that study were the small sample size 

and lack of replication of the reported association in an independent ranibizumab-treated 

AMD cohort. We did not find any association of this SNP in the current study (p>0.05).

We chose to use a pooled DNA GWAS strategy to investigate response to anti-VEGF 

treatment in AMD as this provided a cost-effective and efficient approach to identify 

genetic associations23,30-33. We were able to technically validate ~70% of the 44 SNPs that 

were identified in the pooling strategy at a nominal significance level. Whilst most SNPs 

replicated, the level of significance of the SNPs diminished following technical validation. 

Possible explanations for the diminished significance may be due to experimental error 

during pool construction, array-specific errors resulting from the use of a limited number of 

arrays per pool, variation in allele frequency due to small sample size in some of the pools, 

allele-specific bias skewing the results for some SNPs, and/or small differences in the set 

of samples used in the validation stage34,35. 

For the replication cohort, the number of injections at 6 month of treatment was not 

available, however it is interesting to note that a variation in treatment regime through 

change in number of injections between 3 and 6 months does not appear to ameliorate the 

genetic effect seen in the current study. However, after individual genotyping, replication and 

meta-analysis, SNP rs4910623 remained associated with worse functional outcome (change 

in VA) after the anti-VEGF treatment in AMD. Currently there is much interest in the role of 

anatomical features such as fluid clearance as a measure of treatment response. However, 

it was not considered in this analysis but this would be useful to examine in the future as to 

whether this SNP also affects fluid clearance and central macular thickness (CMT) on OCT 

following anti-VEGF treatment. To our knowledge, SNP rs4910623 and the 2 other SNPs 

associated with good response in the discovery phase have not previously been reported as 

associated with anti-VEGF treatment outcome in any type of cancer, thus it will be interesting 

to investigate the role of these SNPs in cancer following anti-VEGF treatment. Furthermore, 

much work needs to be undertaken to examine the biological basis of this phenomenon as 

well as the functional role of OR52B4 gene in models of angiogenesis, such studies could 

lead to the development of other therapies for AMD patients that can be used as an adjunct 

to existing treatment. This, in turn, offers the prospect of personalising treatment, based 

on genotype and opens up the route for exploring other drug treatment opportunities. In 
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conclusion, we report for the first time a pooled DNA based GWAS on pharmacogenetic 

response to ranibizumab treatment in AMD that identifies association of variant rs4910623 

in the OR52B4 gene. This finding was replicated in an independent replication cohort, 

suggesting that this gene may be involved in the response to anti-VEGF treatments in AMD 

patients of European decent. Finally, our data suggests that the SNP rs4910623 could be 

used as a diagnostic genetic marker before anti VEGF treatments for AMD. 

Methods

Patient Recruitment and Data Collection 

Melbourne Discovery Cohort 

The study was approved by the Human Research and Ethics Committee of the Royal 

Victorian Eye and Ear Hospital (RVEEH) and performed in accordance to the tenets of 

the Declaration of Helsinki (7th revision). Written informed consent was obtained for all 

study participants before participation. Patients were included in the study when they 

were >50 years of age, presented with an active sub-foveal CNV secondary to AMD, and 

received intravitreal anti-VEGF injections. Neovascularization was confirmed by fundus 

photography (Canon CR6-45NM; Canon Saitama, Japan), fundus fluorescein angiography 

(FFA) using IMAGEnet 2000 (Topcon Corporation, Tokyo, Japan), and optical coherence 

tomography (OCT) with Stratus OCT version 5.0.1 (Carl Zeiss Meditec, Dublin, CA) or Cirrus 

HD-OCT version 6.0.0.599 (Carl Zeiss Meditec). Exclusion criteria were nAMD associated 

with non-AMD conditions such as degenerative myopia, angioid streaks and hereditary 

retinal disorders. In addition bilateral nAMD patients who had different VA response 

between both eyes and treatment with either laser photocoagulation or photodynamic 

therapy before anti-VEGF treatment as previously reported were also excluded36. Initially 

a total of 315 nAMD patients were retrospectively recruited from the medical retinal clinic 

of the RVEEH. A total of 297 patients meet the eligibility criteria consisting of 277 patients 

with unilateral nAMD and 20 patients with bilateral nAMD who had the same (either gain 

or loss) VA response in both eyes. A total of 18 bilateral patients did not meet the eligibility 

criteria because they had differing VA response in both eyes.

VA was measured using an Early Treatment Diabetic Retinopathy Study (ETDRS) chart at 

4-metre distance at each visit. The majority of nAMD patients were treated with monthly 

ranibizumab injections (Lucentis; Novartis Pharma AG, Basel, Switzerland) for 3 months 

of initial dosing except for 27 (9.0%) patients who first received a single injection of 

bevacizumab (Avastin; Roche, Basel, Switzerland) who then went on to receive normal 

dosing using ranibizumab. After 3 monthly injections, pro re nata treatment regimen were 

adopted for follow-up injections, that was based on evaluation by a retinal specialist, who 

considered loss of VA ≥ 5 EDTRS letters, the presence of fluid on an OCT scan or presence 
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of chronic or new retinal haemorrhage as criteria for treatment. Data on demographics and 

clinical history (including VA and treatment regimens) were collected for all participating 

patients.

Replication Cohort

Ethical approval for the replication cohort was obtained from the local ethic committees of 

the Radboud university medical center, University of Cologne, and McGill University Health 

Centre. Written informed consent was acquired from all participants. 

The replication cohort consisted of 376 treatment naïve patients of European descent 

with choroidal neovascularization secondary to AMD. Patients were diagnosed by retinal 

specialists based on ophthalmic examination, spectral-domain OCT (Spectralis HRA+OCT, 

Heidelberg Engineering, Heidelberg, Germany) or fluorescein angiography (FA) (Spectralis 

HRA+OCT, Heidelberg Engineering, Heidelberg, Germany; or Imagenet, Topcon Corporation, 

Tokyo, Japan). All included patients were over the age of 50 years, had not undergone any 

previous ophthalmic surgery, except for cataract removal, and did not have other retinal 

disorders besides AMD. 

A total of 144 patients were treated at the Department of Ophthalmology of the Radboud 

university medical centre, Nijmegen, the Netherlands and 182 at the University of Cologne, 

Germany. These patients were included in the European Genetic Database (EUGENDA), 

a multicenter database for the clinical and molecular analysis of AMD. The remaining 

50 patients were treated at the McGill University Health Center, Montreal, Canada. All 

patients received the loading dose of three consecutive monthly intravitreal injections of 

0.5 mg ranibizumab (Lucentis; Novartis Pharma AG, Basel, Switzerland). Afterwards, they 

were followed up monthly and treated on a pro re nata regimen at the clinics of Nijmegen 

and Cologne and on a treat-and-extend regimen at the clinic of Montreal. In Nijmegen 

and Cologne (pro re nata regimen), in cases of persistence or recurrence of choroidal 

neovascularization, which was defined as loss of VA of ≥ 5 ETDRS letters, leakage seen 

on FA, fluid seen by OCT, or new macular hemorrhage or fluid, three consecutive monthly 

ranibizumab injections were administered. VA was assessed before treatment and after the 

three loading injections for all patients. VA was also recorded after 6 months of treatment 

for 262 patients. For 303 patients, Snellen VA measurements were recorded retrospectively 

and 73 patients were followed up prospectively using ETDRS VA. Baseline variables were 

collected using questionnaires or retrieved from the patient files. One eye was selected per 

patient; if both eyes received treatment, the first eye treated was selected and if treatment 

started simultaneously, the study eye was chosen randomly.

First phase – Pooled DNA Based GWAS in the Melbourne Discovery Cohort

In the first phase of the study, a GWAS using a DNA pooling approach was conducted 

(Macgregor et al.37). A peripheral blood sample was collected from each patient and DNA 

was extracted (Qiagen, Victoria, Australia). Genomic DNA was quantified by Nanodrop 
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Specrophotometer (Thermo Scientific) for a DNA concentration ≥175ng/µl. A total of 285 

samples were selected for the pooling cohort (12 samples were excluded due to a low 

DNA concentration required for pooling). Each pool was given a unique ID number, based 

on presenting VA. Non-responders from each pool were classified as those who showed 

loss of ≥5 EDTRS letters VA following 6 months of ranibizumab treatment and all remaining 

patients were classified as responders. Six equimolar DNA pools were generated with a 

pool size varying from 9 to 133 samples (Supplementary Table S2). An equal amount of 

DNA from each sample (varying from 0.2µg to 0.6µg) was added to the appropriate pool, 

with a minimum volume of 5µl per sample to reduce pipetting errors at low volume. Pooled 

genomic DNAs were assayed using an Illumina Human Omni5-Quad Bead Chip that captured 

4.3 million SNP markers. We randomised the pooled samples on the genotyping arrays to 

avoid spurious associations that may arise from array position. Approximately 4,600 indels 

or copy number variants were removed from the analyses. We applied stringent quality 

control (QC) as previously described (Lu et al.38). Briefly, we excluded SNPs with minor allele 

frequency (MAF) <1% from the reference panel of CEU (Utah residents with ancestry from 

northern and western Europe) samples in the 1000 Genome Project. Thus, the number of 

SNPs was reduced to 2.5 million. Further QC criteria for excluding SNPs from the analysis 

were: 1) SNPs with more than 10% negative probe scores; 2) a sum of the mean raw red 

and green intensity values less than 1200 for each array (to ensure calibration); 3) SNPs 

with a small number of expected probes in pools (SNPs with MAF between 1-5% required 

at least half of the expected number of probes, and SNPs with MAF > 5% required at least a 

third; the expected number of probes was calculated as the average number of probes per 

pool per SNP multiplied by the number of samples in each pool); 4) non-autosomal SNPs; 

5) SNPs where the variance of the estimated allele frequency was significantly different 

between all pools. After applying these QC filters, a total of 1,940,408 SNPs were retained 

for further analysis. A GWAS was carried out between responders and non-responders from 

three different baseline VA categories and then results were combined in a meta-analysis, 

which included 225 responders and 60 non-responders.

Second Phase – Technical Replication in the Melbourne Discovery Cohort

In the second phase, the most interesting associations found in the pooled DNA GWAS 

were validated by undertaking individual genotyping of the original 285 samples, plus 

the inclusion of the additional 12 patient samples that subsequently became available 

whose initial concentration was not enough for the pooling GWAS. These samples were 

genotyped individually for 44 SNPs using the MassArray platform (Agena Bioscience, San 

Diego, CA) and performed as previously described36.

Third Phase – Replication in an Independent Cohort of European Descent

In the third phase of the study, SNPs that showed association (p<0.05 after correction 

for multiple testing) in the second phase of the study were analysed in an independent 

ranibizumab-treated AMD cohort of European descent. DNA was extracted and quantified 

in Nijmegen, the Netherlands. Subsequently, DNA samples of a total of 376 AMD patients 
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were genotyped in Melbourne using the MassArray platform (Agena Bioscience, San Diego, 

CA) as previously described36.

Statistical analysis 

Linear regression was undertaken to assess the role of non-genetic factors (potential 

cofounders), including age, sex, smoking status, CNV size, lesion type, number of injections 

and baseline VA, on the dependent variable “change in VA” at 3 and 6 months respectively. 

The GWAS of pooled DNA was undertaken at the Queensland Institute of Medical Research 

(QIMR) as previously described37. A customised pipeline developed at QIMR was used 

for data analysis37,38. Briefly, a GWAS was run within each pool comparison, i.e. a linear 

model based approach was used for association between SNP and allele frequency 

difference in responder compared to non-responder pools accounting for pooling errors. 

A meta-analysis was performed summarising the GWAS results from the multiple pool 

comparisons, weighted by inverse variances. Finally, we applied post-analysis checks to 

the meta-analysis results in order to reduce the chance of false positive findings, filtering 

any SNP that had results from only one of the multiple pool comparisons and those with 

large discrepancies in association results of the SNP itself and its proxies. 

For individual genotyping data, logistic regression was used to assess differences in allele 

frequency between the responder and non-responder groups (defined in the same manner 

as for the GWAS) and adjusted for baseline VA in the discovery cohort and baseline VA and 

age at first injection in the replication cohort. In this replication cohort, different treatment 

regimens were administered after the 3 initial monthly injections. Therefore, we stratified 

the analysis for the replication cohort into two groups; pro re nata and treat-and-extend. 

These groups consisted of 215 pro re nata (Nijmegen and Cologne) and 47 treat-and-

extend (Montreal) patients respectively. Results are reported as odds ratios (OR), 95% 

confidence intervals (95% CI) and p value with statistical significance being defined as  

p <0.05 following Bonferroni correction for multiple testing. For the analyses, the statistical 

software Plink V1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/) and SPSS IBM SPSS 

Statistics for Windows, version 20.0 (IBM Corp., Armonk, New York, USA) were used. To 

prevent any possible confounding, the analyses performed in the both the Melbourne 

discovery and the replication cohort were corrected for baseline VA. 

Meta-analysis of the discovery and replication cohorts was performed using Metal 

software39. For 3 month meta-analysis all the patients from Melbourne discovery and the 

replication cohort were included because they all were treated with 3 initial doses of anti-

VEGF injections while for the 6 months analysis we considered the fact that the Melbourne 

discovery cohort was treated using a pro re nata strategy. Therefore, we included only the 

215 pro re nata treated patients from Nijmegen and Cologne and excluded the 47 patients 

from Montreal who were treated with a treat-and-extend regimen.
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Supplementary material

table s1   Analysis of the influence of demographic and clinical variables on the change in VA 
after 3 and 6 month of anti-VEGF treatment in the Melbourne discovery cohort and 
the replication Cohort

P-value calculated using a linear regression test for change in VA and non-genetic covariates, β: 

coefficient of the linear regression, CI: confidence Interval, SE: Standard Error, VA: Visual Acuity, CNV: 

Choroidal Neovascularization.

table s2   Design of DNA pools, pool comparisons and meta-analysis in pooled GWAS in the 
Melbourne discovery cohort (1st phase of study)

Different pool sizes lead to differences in pooling variance; thus pools were combined to have 

similar sizes (responders checked for association against non-responders). Mean age (at time of first 

treatment with anti-VEGF). SD=standard deviation. vs.=versus.

Melbourne Discovery Cohort Replication Cohort

3 Months  6 Months 3 Months  6 Months

Characteristics P-Value β (CI 95%) SE P-Value β (CI 95%) SE P-Value β (CI 95%) SE P-Value β (CI 95%) SE

Gender (Male vs 
Female)

0.86 -0.26 (-2.7-2.1) 
0.93

0.84 -0.311(-3.4- 
2.84)1.58

0.89 0.33 (-1.13 - 
4.78) 2.26

0.33 2.78 (-2.88 – 
8.45) 2.86

Age 0.27 -1.10 (-0.2-
0.05) 0.10

0.45 -0.07(-0.2- 
0.13)0.10

<0.01 -0.42 (-0.70 - 
-0.13) 0.14

0.06 -0.37 (-0.75 – 
0.11) 0.19

Baseline VA <0.001 -0.24 (-0.3 
-0.17) 0.03

<0.001 -0.32 (-0.32 
to -0.15)0.04

0.001 -0.21 (-0.33 - 
-0.09) 0.06

0.04 -0.18 (-0.35 –  
- 0.007) 0.09

Smoking 0.71 0.53 (-1.9-2.9) 
1.48

0.42 1.27(-1.84 
4.38) 1.58

0.33 2.21 (-2.29 - 
6.71) 2.28

0.37 2.61 (-3.14 – 
8.36) 2.90

Type of lesion 0.30 2.1 (-1.2-5.5) 
2.0

0.45 -1.74(-6.2 to 
2.78)2.2

0.63 1.23 (-3.87 – 
6.33) 2.58

0.50 -2.21 (-8.68 – 
4.27) 3.27

Size of CNV 0.91 0.18 (-2.8-3.2) 
1.83

0.53 -1.27(-5.2 to 
2.73)2.0

0.12 -0.48 (-1.08 – 
0.133) 0.31

0.08 -0.71 (-1.51 - 
0.09) 0.41

Number of 
injections

- - 0.25 -3.4(-5.9 to 
-1.9)0.71

- - - -

Pool ID 
(responder)

Presenting VA 
ETDRS Letters

Pool 
size

Male/Female n (%) Mean age ± 
SD (years)

Pool ID (non- 
responders)

Presenting VA 
ETDRS Letters

Pool 
size

Male/Female
N (%)

Mean age ± 
SD (years)

1 = 36 -69 133 48(17.0)/85(29.9) 78.9±6.3 VS 2 =36 -69 44 21(7.4)/23(8.0) 79.0±8.6

3 ≤ 35 46 23(8.0)/23(8.0) 79.9±7.0 4 ≤ 35 7 1(0.3)/6(2.1) 80.8±7.6

5 ≥ 70 46 19(6.6)/27(9.5) 79.8±7.7 6 ≥ 70 9 3(1.1)/6(2.1) 80.7±8.0

Meta-analysis of pool comparisons Responder/Non-responders

 1, 3,5 vs.  2,4,6 (225 individuals)/ (60 individuals)
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table s3   HaploReg database showing variants located within predicted regulatory regions 
and in LD (r2 > 0.8) with rs4910623 (+/- 250Kb)

HaploReg http://www.broadinstitute.org/mammals/haploreg/haploreg.php

table s4   The Ocular Tissue Database shows expression of the OR52B4 gene in adult human 
eye tissues

1  Expression of genes in the Ocular Tissue Database (https://genome.uiowa.edu/otdb/) is 

represented as an Affymetrix Probe Logarithmic Intensity Error (PLIER) number. RPE: retinal pigment 

epithelium

table s5   Pooled GWAS association of previously associated known AMD risk genes with 
change in VA at 6 month of anti-VEGF treatment in Melbourne discovery cohort

+SNPs in high LD with rs11200638 (r2>0.8). *SNP in high LD with rs1061170 (r2=1)

Chr pos 
(hg19)

LD(r²) LD(D’) Variant Ref Alt EUR 
(freq)

Motifs Changed RefSeq Genes Functional 
Annotation 

11 4372783 0.87 0.96 rs4910613 A C 0.49 - 16kb 3’ of OR52B4 -

11 4377981 0.94 0.98 rs10835954 C T 0.5 Pou5f1 11kb 3’ of OR52B4 -

11 4387760 0.99 1 rs12293167 G T 0.5 5 altered motifs 731bp 3’ of OR52B4 -

11 4389587 1 1 rs7929171 G C 0.51 DMRT1,DMRT4,LUN-1 OR52B4 5’-UTR

11 4389639 1 1 rs4910623 G A 0.51 GATA,TCF4 22bp 5’ of OR52B4 -

11 4395551 0.91 -0.98 rs1895914 C T 0.51 Nkx2,Sox 5.9kb 5’ of OR52B4 -

11 4396029 0.92 -0.99 rs12575038 T C 0.51 TR4 6.4kb 5’ of OR52B4 -

11 4399936 0.88 -0.99 rs7124081 A C 0.52 CEBPB 6.2kb 3’ of TRIM21

Seq 
name

start stop strand Probe Id GENE 1PLEIR Score in different tissues of Eye

Choroid & 
RPE

Optic nerve Optic nerve 
head

Retina

chr11 4388614 4391330 - 3360136 OR52B4 17.3781 22.4866 22.9475 25.5724

GENE            SNP P-value

VEGF-A

rs699946 0.24

rs3025000 0.04

ARMS2

   rs10490924 0.85

HTRA1

rs2284665+ 0.09

rs932275+ 0.06

CFH

rs3753394       0.54

rs800292 0.33

rs1065489 0.23

rs7529589* 0.55
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Abstract

Importance: Visual acuity (VA) outcome differs considerably among neovascular age-related 

macular degeneration (nAMD) patients treated with anti-VEGF drugs. 

Objective: The purpose of this study was to identify genetic factors associated with variability 

in the response to anti-VEGF therapy for nAMD. Identification of pharmacogenetic associations 

may help to understand the mechanisms underlying this variability, as well as to pave the way 

for personalized treatment in nAMD.

Design: Cohort study.

Setting: Multicenter. 

Participants: 2,058 nAMD patients (678 were included in the discovery phase, and 1,380 in 

the replication phase).

Main Outcome(s) and Measure(s): VA change after the loading dose of three monthly anti-

VEGF injections.

Results: The mean age at baseline for all patients included in the study was 78 years (SD=7.4), 

and 58.8% of the patients were of female sex. The mean baseline VA was 51.3 Early Treatment 

Diabetic Retinopathy Study (ETDRS) letters (SD=20.3), and the mean change in VA after the 

loading dose of 3 monthly injections was a gain of 5.1 ETDRS letters (SD=13.9). Genome-

wide single variant analyses of common variants revealed five independent loci that reached 

a P-value<10-5. After replication and meta-analysis of the lead variants, rs12138564 located in 

the CCT3 gene remained nominally associated with a better treatment outcome (P=1.38x10-5, 

β=0.034, SE(β)=0.008). Genome-wide gene-based analyses of rare variants showed genome-

wide significant associations for the C10orf88 and UNC93B1 genes (P=4.22x10-7 and 

P=6.09x10-7, respectively), in both cases leading to a worse treatment outcome. Patients 

carrying rare variants in the C10orf88 gene lost a mean of 30.6 ETDRS letters after treatment, 

and patients carrying rare variants in UNC93B1 lost a mean 26.5 ETDRS letters after treatment.

Conclusions and relevance: Our results suggest that rare protein-altering variants in the 

C10orf88 and UNC93B1 genes are associated with worse response to anti-VEGF therapy for 

nAMD. There was a limited contribution of common genetic variants to variability in nAMD 

treatment response with a nominal association of rs12138564 in CCT3 with better treatment 

outcome. This study for the first time identified a role for rare genetic variation in treatment 

response of nAMD, which may be used to adapt treatment strategies to individual needs.
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Introduction

Advanced age-related macular degeneration (AMD) is a leading cause of blindness in 

the elderly1,2. The most vision-impairing type of advanced AMD is the neovascular form 

(nAMD), which is responsible for the majority of the visual acuity (VA) loss caused by this 

disease3. In nAMD, the proliferation of aberrant new blood vessels leads to severe scarring 

of the central retina4. Currently, the most effective treatment for nAMD is intravitreal 

injections of anti-vascular endothelial growth factor (VEGF) antibodies5,6. Although this 

treatment has resulted in dramatic improvements in VA for many nAMD patients, a high 

degree of variability in response to these drugs has been observed. In fact, around 10% 

of the nAMD patients show a decline in VA of at least 15 letters on the Early Treatment 

Diabetic Retinopathy Study (ETDRS) letter chart despite treatment5-7.

Early identification of patients with poor treatment response is a critical step in optimizing 

AMD treatment. Patients classified as non-responders based on an absence of VA 

improvement after anti-VEGF injections, may indeed have better outcomes with higher 

frequency of dosing along with regular monitoring8. Also, alternative therapies with the 

potential for longer action are currently being developed for nAMD9, and it is possible 

that other therapeutic options will become available for patients who do not achieve 

improvements in vision with current strategies. Therefore, establishing which factors are 

involved in treatment response variability could aid in the stratification of patients for the 

best treatment regime or therapeutic option10.

Several studies have shown that clinical and epidemiological factors associated with 

disease severity before treatment can influence the anti-VEGF treatment outcome11. 

Genetic factors have also been indicated to affect treatment outcome in nAMD patients, 

although contradictory results have been reported12. Anti-VEGF treatment seemed to be 

less effective in nAMD patients carrying the AMD risk variant rs1061170 (p.Y402H) in 

the CFH gene in a meta-analysis of 13 different studies13. In addition, other studies have 

reported pharmacogenetic associations with other AMD-associated variants, variants 

involved in the VEGF neovascularization pathway and variants in other genes12,14-31. 

However, pharmacogenetic analysis in randomized controlled trials such as the CATT and 

IVAN studies did not reveal any associations with genetic variants32-36.

The pharmacogenetic studies reported so far focus on a limited amount of variants or are 

limited in sample size and therefore statistical power12,14-33. Moreover, these studies have 

been restricted to the analysis of common variants. Rare variants, which may have stronger 

effects and can pinpoint underlying mechanisms by identifying the gene involved, have not 

yet been explored37,38. Consequently, larger and more comprehensive genetic studies are 

needed, targeting both common and rare variation in the genome.

Employing the resources of the International AMD Genomics Consortium (IAMDGC) and 

additional nAMD cohorts treated with anti-VEGF, we performed a multicenter genome-wide 

association study in order to: 1) evaluate in a hypothesis-free approach the association 
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of common genetic variants with VA treatment response to anti-VEGF therapy for nAMD, 

and 2) evaluate for the first time the cumulative effect of rare protein-altering variants on 

VA treatment response to anti-VEGF therapy for nAMD. Identification of pharmacogenetic 

associations is of great relevance in the AMD field, as they can help to identify underlying 

causal genes and thus mechanisms, suggest potential new drug targets, and can be used 

as robust biomarkers for precision medicine.

Methods

Study cohorts

Patients for both the discovery and replication cohorts of this study were recruited from 

multiple clinics, as detailed in Table 1. The discovery cohort included nAMD patients who 

were evaluated as part of the International AMD Genomics Consortium (IAMDGC) project39. 

All groups collected data according to Declaration of Helsinki principles. Study participants 

provided informed consent, and protocols were reviewed and approved by local ethics 

committees.

Inclusion criteria for all study center patients were defined as neovascularization secondary 

to AMD confirmed by fluorescein angiogram or optical coherence tomography, age greater 

or equal to 50 years, and a loading dose of three consecutive injections of bevacizumab 

(Hoffmann-La Roche, Basel, Switzerland) or ranzibizumab (Hoffmann-La Roche, Basel, 

Switzerland / Novartis Basel, Switzerland) therapy at monthly intervals (± two weeks). We 

excluded eyes with other retinal morbidities such as myopia greater than 8 diopters, ocular 

surgery during follow-up or in the two months prior to treatment, previous treatment for 

neovascular disease, macular hole, staphyloma, or a VA lower than 2.3 logMAR (0 ETDRS 

letters). Information about gender, age at first injection, as well as baseline VA before 

anti-VEGF treatment and after three monthly injections (± two weeks) was collected. VA 

was collected in ETDRS letters or Snellen and was transformed into logMAR for analysis. 

Influence of the variables age and baseline VA on the change in VA after 3 months was 

assessed including these variables in a general linear model.

Exome array genotyping and quality control

DNA samples from patients included in the discovery cohort were uniformly genotyped 

with a custom-modified HumanCoreExome array (Illumina) by the IAMDGC, at the 

Center for Inherited Disease Research (CIDR). Genotype quality control and imputation 

was performed by the IAMDGC, as has been previously detailed39. Imputation provided 

information on 28,930,739 variants. Principal components analysis (PCA) was performed 

and only European-descent individuals, based on the PCA, were included in the analysis. 
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Informative PCA eigenvalues were additionally used as covariates to adjust for population 

stratification. Identity-by-descent analysis was performed and samples with a relatedness 

score (PI-HAT)>0.25 were excluded.

Treatment outcome measurement

The outcome measure was a functional response defined as the change in visual acuity 

after treatment (ΔVA), which was defined as the initial VA before treatment subtracted 

from the final VA after three anti-VEGF injections. The logMAR VA values for the initial and 

final visual acuity distributions were evaluated for normal distribution amongst each study 

cohort, and outliers (defined as mean+3*standard deviation) were adapted to mean±2*SD. 

Genome-wide analyses of common variant

Variants with imputation quality score (R2) less than 0.6 and minor allele frequency (MAF)<0.05 

were excluded from the common variant analysis. Genome-wide single variant association 

analyses using the ΔVA as the testing variable were performed including the first two ancestry 

principal components (PC1, PC2), baseline VA and age at first injection as a covariates. 

Common variants (MAF≥0.05) were tested via a quantitative linear regression model (linear-

Wald testing) using the q.lm package in the EPACTS software (http://genome.sph.umich.

edu/wiki/EPACTS). In order to account for inter-cohort heterogeneity, the analyses were 

performed separately in the five discovery cohorts and covariate-adjusted estimates of the 

genetic effects were subsequently combined in a meta-analysis, which comprised a total of 

678 unrelated European descent nAMD patients. Meta-analysis was performed with METAL40 

based on effect size estimates, and standard errors per cohort. Genomic control was applied 

and if lambda was greater than 1, adjustments were made for the inflation factor per cohort. 

A threshold for suggestively associated variants from the discovery cohort was set at P=10-5. 

Final results were visualized using Manhattan and Q-Q plots generated with the R package 

qqman (https://cran.r-project.org/web/packages/qqman/index.html). Locus Zoom was 

used to visualize the LD structure block in each associated locus (http://locuszoom.org/)41.

Genotyping and association analyses in replication cohorts

The lead variants of the loci that reached the threshold for suggestive significance 

(P-value<10-5) were selected for genotyping in independent replication cohorts. These 

were rs241692 (chr3:60,410,187), rs12138564 (chr1:156,291,600), rs13002976 

(chr2:10,678,538), rs242939 (chr17:43,895,579), and rs2237435 (chr7:41,731,053).

Genotyping in the replication phase was performed using KASP technology (LGC Group, 

Middlesex, United Kingdom) and the MassARRAYiPlex technology (Agena Bioscience, San 

Diego, CA, USA. All variants fell within Hardy-Weinberg equilibrium measures.
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The association analysis in the replication cohort was performed with EPACTS in the 

same manner as the discovery cohort, except for the inclusion of PCA components as 

covariates. The results of all cohorts were combined in a meta analysis based on effect size 

estimates and standard errors. Subsequently, an overall meta-analysis of the discovery 

and replication phase was performed in the same manner (11 cohorts, n=2,058). Meta-

analyses were performed using the software METAL40.

Gene-based analysis of rare variants

We performed gene based analyses using the optimal unified sequence kernel association 

test, SKAT-O42, as implemented in EPACTS(http://genome.sph.umich.edu/wiki/EPACTS). 

When the majority of variants in a gene are associated with a trait and the effects are in the 

same direction, the burden test is most powerful, in contrast, SKAT is most powerful when 

most of the variants are not associated and the effects are in different directions. We used 

the SKAT-O test as it maximizes power compared to the traditional burden test and SKAT 

maintaining the power in both scenarios42. Rare and low frequency (MAF<0.05) protein-

altering variants (missense, nonsense or affecting canonical splice sites) were included in 

the analysis. Imputed variants were only included if imputation quality (R2) was ≥0.8. As in 

the single variant analysis for common variants, only non-related individuals of European 

descent were included in the analysis. Association tests were adjusted for age, baseline 

VA and the first two ancestry principal components, and a sensitivity analysis adjusting for 

ten ancestry principal components was additionally performed. The summary statistics for 

each single variant were extracted from a comparable single variant analysis using EPACTS 

(http://genome.sph.umich.edu/wiki/EPACTS).

Results

Characteristics of the study cohorts

We collected demographic and VA treatment response information for 2,058 nAMD 

patients who received anti-VEGF therapy. In the discovery phase, 678 patients of five 

different cohorts were genotyped with exome arrays by the IAMDGC39 and used for 

genome-wide association analyses on common and rare variants. In the replication phase, 

1,380 individuals from six different cohorts were genotyped for common variants identified 

in the discovery study.

Demographics and clinical parameters of the study cohorts are described in Table 1. The 

mean change in VA after the loading dose of 3 monthly injections for all patients included 

in the study was 0.101 logMAR (logarithm of the minimum angle of resolution), which 

corresponded to a gain of 5.1 ETDRS letters, and varied per cohort (Table 1). Age and visual 
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acuity at baseline have been the factors most consistently described as influencing change 

in VA after anti-VEGF treatment43-46. This was also true for the total patient population 

and in the majority of the individual cohorts (eTable 1). Therefore, these variables were 

included as covariates in all our subsequent analyses.

Genome-wide association analyses of common variants identify 

a nominal association of rs12138564 in the CCT3 gene with better 

response to anti-VEGF therapy in nAMD

In the discovery phase, we performed genome-wide single-variant association analyses on 

the change in VA after 3 monthly anti-VEGF injections. Linear regression models adjusted 

for age, baseline VA and the first two ancestry principal components were conducted on 

6,089,769 quality-controlled common variants (minor allele frequency, MAF≥0.05).

We identified a total of 111 variants that reached a suggestive significance level 

(P-value<10-5) (Figure 1A). The overall genomic inflation factor was very low (λ = 1.01), 

implying no confounding effect of the population’s genetic structure on the association 

analyses (eFigure 1). Consecutive conditional analysis revealed that these variants 

were distributed across five different loci, for which the lead variants were rs12138564, 

rs13002976, rs241692, rs2237435 and rs242939. The results for these variants are 

described in Table 2, and the details of the associations per cohort are presented in 

eTable 2.

In the replication phase, the lead variants of the five associated loci were analyzed in six 

independent anti-VEGF treated nAMD patient cohorts, which comprised a total of 1,380 

patients. SNP rs12138564 on chromosome 1 was nominally associated with functional 

treatment response in the replication phase, showing the same direction of effect as in 

the discovery phase (P
replication

=0.029, β=0.019, SE(β)=0.009) (Table 2). This association 

was mainly driven by the cohort of St. James’s University Hospital, Leeds (P
Leeds

=0.028, 

β=0.044, SE(β)=0.020) as no association was observed for this variant in any of the other 

five replication cohorts (eTable 2). The other four lead variants did not show an association 

in the replication phase.

The results of the discovery and replication phase were combined in an overall meta-

analysis of eleven cohorts, including 2,058 nAMD patients (Table 2, eTable 2). The 

association of SNP rs12138564 with functional treatment response remained nominally 

significant, showing a positive effect of the minor allele on treatment outcome 

(P
meta

=1.38x10-5, β=0.034, SE(β)=0.008) (Table 2, eTable 2). SNP rs12138564 is located in 

intron 8 of the Chaperonin Containing TCP1 Subunit 3 (CCT3) gene (Figure 1B). The other 

four lead variants did not replicate and their association was lost after the meta-analysis of 

the discovery and replication cohorts (Table 2, eTable 2).
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figure 1   Single-variant association analyses of common variants on response to anti-VEGF 
therapy in neovascular AMD

A) Genome-wide single-variant association analysis for common variants in a discovery cohort of 678 

nAMD patients identified five loci reaching suggestive significance. The Manhattan plot illustrates 

the -log(P-values) of each individual SNP tested for association. The horizontal blue line indicates 

the threshold considered for suggestive significance (P-value<10-5). B) Locus track plot showing a 

detailed view of the chromosome 1 locus with rs12138564 in the CCT3 gene as the lead SNP shown 

with a purple rhombus. The linkage disequilibrium (LD) structure of the area was constructed 

with this SNP as reference. C) Change in VA after 3 months of anti-VEGF treatment stratified by 

rs12138564 genotype in the discovery and replication cohorts. The homozygous genotype for the 

reference allele (GG) showed a mean improvement in VA of 0.079 logMAR or approximately 4 ETDRS 

letters, whereas the heterozygous GT group showed a mean improvement in VA of 0.118 LogMAR 

or approximately 6 ETDRS letters (P=8x10-3), and the homozygous TT group an improvement 0.150 

logMAR or approximately 7.5 ETDRS letters (P=2x10-3).

VA = visual acuity, logMAR = logarithm of the minimum angle of resolution.
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figure 2   Gene-based analysis of rare variants on response to anti-VEGF therapy in 
neovascular AMD

A) Manhattan plot illustrating the -log(P-values) of each gene analyzed in the SKAT-O 

gene-based test of rare variants. The red line indicates the genome-wide significance level 

(P<3.38x10-6=0.05/14,788). A genome-wide significant burden of rare protein-altering variants in the 

C10orf88 and UNC93B1 genes was associated with worse response to anti-VEGF therapy.  

B) Change in VA after 3 months of anti-VEGF treatment stratified by non-carriers of rare variants and 

carriers of rare variants in C10orf88 and UNC93B1. Horizontal lines indicate the mean change in VA 

after 3 months of anti-VEGF treatment per group. Carriers of rare variants in C10orf88 who did not 

carry rare variants in UNC93B1 were included in the SKAT-O test of UNC93B1 as non-carriers and vice 

versa. Non-carriers gained on average 0.109 logMAR or 5.5 ETDRS letters of VA after treatment, while 

carriers of rare variants in C10orf88 lost 0.609 logMAR or 30.6 ETDRS letters and carriers of rare 

variants in UNC93B1 lost 0.529 logMAR or 26.5 ETDRS letters on average.

VA = visual acuity, logMAR = logarithm of the minimum angle of resolution.

 

Next, we analyzed the genotypic effects of SNP rs12138564 on change in VA in the 

discovery and replication cohorts combined. The heterozygous GT genotype group 

showed an increased improvement in VA after anti-VEGF treatment compared to the 

reference GG genotype group (P=8x10-3), and the homozygous TT group showed the 

largest improvement (P=2x10-3). The homozygous genotype for the reference allele (GG) 

showed a mean improvement in VA of 0.079 logMAR or approximately 4 ETDRS letters, 

whereas the heterozygous GT group showed a mean improvement in VA of 0.118 LogMAR 

or approximately 6 ETDRS letters, and the homozygous TT group an improvement 0.150 

logMAR or approximately 7.5 ETDRS letters (Figure 1C).

Additionally, variants shown to be associated with treatment response in previous 

studies12,14-31 were extracted from the GWAS results. No variants reached genome-wide 

significance, nor were they suggestively associated (P-value<0.05/18=0.003) with 

functional treatment response in this study (eTable 3). We also determined whether 

the 52 AMD-associated variants reported by the largest AMD case-control GWAS study 

performed so far39 were associated with functional treatment outcome. Out of the 52 
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AMD-associated variants, 47 were present in one or more of our study cohorts but none 

of these were found to be associated with VA response at either suggestive significance 

(P-value<0.05/47=0.001) nor at the genome-wide significance level (eTable 4).

Gene-based analysis identifies a burden of rare variants in the 

C10Orf88 and UNC93B1 genes associated with worse response to 

anti-VEGF therapy in nAMD

Using the rare variation content of the IAMDGC exome array, we analyzed the cumulative 

effect of rare protein-altering variants on nAMD functional treatment response. The analysis 

was performed on the 678 patients of European descent genotyped with exome arrays. 

We performed SKAT-O42 gene-based tests of quality controlled variants with a MAF<0.05. 

A total of 58,414 protein-altering variants classified as missense (leading to an amino 

acid change), nonsense (introducing a stop codon) or affecting canonical splice sites were 

included in the analysis. These variants were distributed in a total of 14,788 genes. The 

association analyses were adjusted for age, baseline VA and the first two ancestry principal 

components.

We identified two genes associated with VA treatment response at a genome-wide 

significance level (P-value<3.38x10-6=0.05/14,788): chromosome 10 open reading frame 

88 (C10orf88, P=4.22x10-7) and unc-93 homolog B1 (UNC93B1, P=6.09x10-7) (Table 3, 

Figure 2A). Sensitivity analysis was carried out adjusting for eight additional ancestry 

principal components, and yielded comparable results (C10orf88, P=2.24x10-7; UNC93B1, 

P=1.65x10-7). Patients who did not carry a rare variant in either C10orf88 or UNC93B1 

gained on average 0.109 logMAR or 5.5 ETDRS letters of VA after treatment. In contrast, the 

mean change in VA after treatment for the carriers of rare variants in C10orf88 was a loss 

of 0.609 logMAR or 30.6 ETDRS letters. The carriers of rare variants in UNC93B1 showed 

a substantial decrease in VA after treatment as well, losing 0.529 logMAR or 26.5 ETDRS 

letters on average (Figure 2B).

table 3   Gene-based analysis of rare variants on response to anti-VEGF therapy in neovascular 
AMD

Gene Chromosome Chromosomal positiona N rare variants RAC P-value

C10orf88 10 124,692,082 – 124,712,511 3 7 4.22x10-7

UNC93B1 11 67,765,163 – 67,770,499 2 14 6.09x10-7

N = number, RAC = rare allele count
aChromosome and chromosomal position according to the NCBI RefSeq hg19 human genome 

reference assembly. 

 

All variants included in the burden tests for these two genes had a high imputation quality 

score (R2) of 1. For C10orf88, three rare protein-altering variants were included in the 

test; two of them leading to an amino acid change (c.412G>A; p.Glu138Lys and c.827T>C; 
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p.Ile276Thr) and one variant introducing a stop codon (c.1258C>T; p.Gln420*). The 

p.Glu138Lys and p.Ile276Thr variants individually showed a nominal association with worse 

response to treatment (P=4.96x10-4 and P=2.33x10-5, respectively). The variant p.Gln420* 

was present in only one individual and did not show an association at the single variant level 

(P=0.120). The variants p.Glu138Lys and p.Gln420* had a CADD score >20, which indicates 

that they are among the 1% most deleterious substitutions in the genome (eTable 5).

Two variants contributed to the burden of the UNC93B1 gene, both leading to an amino 

acid change (c.385C>A; p.Leu129Ile and c.626C>T; p.Pro209Leu). Both variants individually 

showed a nominal association with worse response to treatment (P=3.33x10-7 for 

p.Leu129Ile and P=4.21x10-7 for p.Pro209Leu), and had an assigned CADD score >20 (eTable 

5). These two variants are in high linkage disequilibrium (r2~_1), and were simultaneously 

present in 7 individuals, all belonging to the Hadassah-Hebrew University Medical Center 

cohort from Jerusalem.

Finally, we extracted the results of the genes in which a burden of rare variation has been 

shown in AMD (CFH, CFI, TIMP3 and SLC16A8) from the gene-based analysis39. A suggestive 

association (P-value<0.05/4=0.013) was found for SLC16A8 (P=0.007) (eTable 6); while 

none of the genes reached the genome-wide significance level.

Discussion

We have undertaken the largest multicenter pharmacogenetic cohort study of nAMD 

patients reported so far, and performed for the first time both a genome-wide single variant 

analysis for common variants and a gene-based analysis for the cumulative effect of rare 

variants.

We evaluated the role of genetic variation on primary functional response: change in VA 

after the loading dose of three monthly injections. We aimed to understand the genetic 

component of the variability in functional response because VA is the most relevant outcome 

measure for patients as it directly influences their quality of life47. Whether our findings on 

the functional response can be related to an anatomical response, commonly defined as 

the change in central macular thickness or retinal fluid clearance as measured by optical 

coherence tomography, remains to be further investigated48. We chose the time interval of 

3 months, as three loading injections are administered widely in contrast to the follow-up 

treatment, which is variable per clinic and will impact on VA outcomes49. The majority of 

patients show the most improvement in their VA after the three first monthly injections5, 

and this time interval can thus be predictive of a longer-term response15. Moreover, long-

term treatment response, is likely to be affected by non-adherence to treatment protocols. 

As there is no consensus in the definition of a functional non-response, we analyzed the 

trait in a continuous manner. This type of exploratory analysis represents the full spectrum 

of the patient population and may facilitate comparison and interpretation of study results. 
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We investigated the treatment response to bevacizumab or ranzibizumab therapy in a 

combined analysis. The CATT50,51 and IVAN52,53 clinical trials have demonstrated similar 

outcomes after bevacizumab treatment compared to those after ranibizumab treatment, 

and therefore the factors underlying the treatment response variability may be similar. 

In order to increase our statistical power, we combined results from both treatments in a 

unique analysis.

The heritability of treatment response to anti-VEGF in nAMD is unknown and difficult 

to estimate with our sample size. Nevertheless, our study had 80% power to detect 

common variants of moderate effects, explaining at least 6.2% of the variance in 

treatment response54. However, no single-variant associations were found at genome-wide 

significance level, suggesting a limited effect of individual common variants on treatment 

outcome.

Our genome-wide single variant association analysis of common variants identified the 

variant rs12138564, located in intron 8 of the CCT3 gene, to be nominally associated with 

treatment response after replication analysis, and therefore, this variant may merit further 

investigation in alternative cohorts. 

We did not find any of the previously reported variants12,14-31 to be associated with functional 

response at a genome-wide level nor at suggestive significance level (P-value<0.003). 

This may be due to differences between the studies in response definition and patient 

population in terms of disease stage and other environmental factors, or due to spurious 

findings. However, our results support the notion that none of the previously identified 

genetic markers, individually, are strong determinants of overall functional treatment 

response. Furthermore, we also did not find a genome-wide nor a suggestive association 

(P-value <0.001) for any of the 52 AMD-associated variants reported in the largest AMD 

GWAS performed so far39.

The rare variant burden test revealed two genes associated with primary functional 

response at a genome-wide level: C10orf88 and UNC93B1. The function of C10orf88 is 

still uncharacterized and therefore the biological link to treatment response in nAMD is 

unclear. It has been suggested that common variants in C10orf88 are associated with 

vitamin D levels, although it cannot be excluded that the effect might be driven by the 

neighbouring gene ACADSB (acyl-Coenzyme A dehydrogenase)55. Additionally, C10orf88 

is expressed at low levels in the retina and RPE/choroid56. UNC93B1 is involved in the 

innate and adaptive immune response by regulating toll-like receptor (TLR) signaling57,58. 

Regulation of the TLR and their subsequent signaling pathways has been found to be 

associated with AMD in apoptotic response59, as well as with activation of microglia 

leading to retinal inflammation60. TLRs are found on retinal and choroidal vasculature61, 

and interact with CD46, known to be associated with regulation of the complement immune 

system. Dysregulation in TLR signaling and the complement system may contribute to the 

pathogenesis of AMD62-64. Therefore, the identification of rare genetic variation in UNC93B 

in our study may point towards an immune component in treatment response in AMD. Of 
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note, the UNC93B variants driving the effect in the SKAT-O test were only found in patients 

belonging to the Jerusalem cohort. This is in line with the higher allele frequency found for 

the Jewish population as compared to the non-Finish European population in the Ashkenazi 

Genome Consortium and ExAC databases65,66, and therefore, this finding may be related to 

the genetic nature of that specific population.

Carriers of rare variants in the C10orf88 and UNC93B genes lost on average 6 and 5 lines 

of vision in the ETDRS letter chart respectively. The effect of rare variants in VA outcome 

after treatment was thus very large, making these findings potentially relevant for the 

clinical practice67. Interestingly, when analyzing the genes with a burden of rare variants 

associated with AMD39, we found a suggestive association (P-value<0.013) with functional 

treatment outcome for the gene SLC16A8.

Conclusions

Our multicenter GWAS suggests that the variability in primary functional treatment 

outcome in nAMD is probably not explained by large effects of individual common variants. 

We identified a common variant in the CCT3 gene nominally associated with functional 

primary response to anti-VEGF therapy for nAMD. However, rare genetic variants seem to 

have large effects on treatment outcome, as a burden of rare protein-altering variants in 

the C10orf88 and UNC93B1 genes was associated with worse VA treatment response. This 

suggests that rare genetic variants might be used as biomarkers for VA response in nAMD, 

and may allow patients to be stratified for different regimen doses or therapies. 
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etable 5   Rare protein-altering variants in C10orf88 and UNC93B1 included in the gene-based 
analysis 

Gene Varianta Protein change Imputation 
quality (R2)

CADD scoreb RAC Single vari-
ant P-value

β (SE)

C10orf88
 

c.412G>A p.Glu138Lys 1 24.6 3 4.96x10-4 -0.618 (0.177)

c.827T>C p.Ile276Thr 1 0.038 3 2.33x10-5 -0.749 (0.176)

c.1258C>T p.Gln420* 1 38 1 0.120 <0

UNC93B1 c.385C>A p.Leu129Ile 1 24.9 7 3.33x10-7 -0.606 (0.118)

c.626C>T p.Pro209Leu 1 25.6 7 4.21x10-7 -0.596 (0.117)

RAC = Rare allele count, SE = Standard error

a   Positions according to the NCBI RefSeq hg19 human genome reference assembly. 

b   The CADD score refers to the PHRED-like scaled C-score for which ≥20 indicates that the variant is 

predicted to be in the 1% most deleterious substitutions in the human genome.

etable 6  Gene-based analysis of rare variants in genes previously associated with AMD

Gene Chromosome Chromosomal positiona N rare variants RAC P-value

CFH 1 196,621,252-196,716,375 14 40 0.541

CFI 4 110,662,068-110,723,117 10 26 0.026

TIMP3 22 33,198,100-33,255,356 2 4 0.163

SLC16A8 22 38,474,406-38,478,804 5 21 0.007

N = number, RAC = rare allele count

a  Chromosome and chromosomal position according to the NCBI RefSeq hg19 human

efigure 1  Q-Q plot of the single-variant association analysis of response to anti-VEGF therapy 
in neovascular AMD
Shown as black dots are the observed P-values (-log

10
(p)) compared to those expected under the null 

hypothesis.

In the meta-analysis, adjustment for the inflation factor of the different cohorts was conducted 

when λ>1 (University Hospital of Cologne cohort λ=1.020, Hadassah-Hebrew UMC cohort λ=0.99, 

Radboud umc cohort λ=1.001, Centre for Eye Research Australia cohort λ=1.005 and Centre for 

Vision Research cohort λ=1.005).
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Abstract

Purpose: To identify genetic variants associated with complement activation, which could 

help to select age-related macular degeneration (AMD) patients for complement inhibiting 

therapies.

Design: Genome-wide association study (GWAS) followed by replication and meta-analysis.

Participants: 2,245 AMD patients and controls.

Methods: A GWAS on serum C3d/C3 levels was performed in 1,548 AMD patients and 

controls. After genotype imputation and quality control, 9,972,920 variants were included in 

the analysis. For replication and meta-analysis, 697 additional individuals were genotyped 

for the lead SNPs in the associated signals. A model for complement activation including 

the identified genetic and non-genetic factors was built, and the variance explained was 

estimated. Haplotype analysis was performed for eight SNPs across the CFH/CFHR locus. 

Association with AMD was performed for the variants and haplotypes found to influence 

complement activation. 

Main Outcome Measure: Normalized C3d/C3 levels as a measure of systemic complement 

activation.

Results: Associations with complement activation were identified at the CFH/CFHR locus. 

Complement activation was independently associated with rs3753396 located in CFH 

(P
discovery

=1.09x10-15, P
meta

=3.66x10-21, β=0.141, SE=0.015) and rs6685931 located in CFHR4 

(P
discovery

=8.18x10-7, P
meta

=6.32x10-8, β=0.054, SE=0.010). A model including age, AMD 

disease status, body mass index, triglycerides, rs3753396, rs6685931, and previously 

identified SNPs, explained 18.7% of the variability in complement activation. Haplotype 

analysis revealed three haplotypes (H1-2 and H6 containing rs6685931, and H3 containing 

rs3753396) associated with complement activation. Haplotypes H3 and H6 conferred 

stronger effects on complement activation compared to the single variants (P=2.53x10-14, 

β=0.183, SE=0.024 and P=4.28x10-4, β=0.144, SE=0.041 respectively). Association 

analyses with AMD revealed that SNP rs6685931 and haplotype H1-2 containing rs6685931 

associated with a risk for AMD development, while SNP rs3753396 and haplotypes H3 and 

H6 were not associated with AMD.

Conclusions: SNP rs3753396 in CFH and SNP rs6685931 in CFHR4 are associated with 

systemic complement activation levels. The stronger effects of haplotypes H3 and H6 on 

complement activation suggest that other variants at the CFH/CFHR locus also influence 

this trait. SNP rs6685931 in CFHR4, and its linked haplotype H1-2, conferred also a risk for 

AMD development, and therefore could be used to identify AMD patients that would benefit 

most from complement inhibiting therapies.
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 Background

The complement system is an integral part of our innate immunity. Its best known 

physiological functions are host defense against foreign intruders and homeostasis 

maintenance.1 It consists of more than 30 plasma proteins and cellular components that 

interact in proteolytic cascades for an efficient and rapid activation leading to inflammation, 

opsonization and targeted cytolysis.2

The complement system can be activated by three different pathways: the classical 

pathway (CP), the lectin pathway (LP) and the alternative pathway (AP). The CP is activated 

by antibody-antigen complexes and the LP by lectin or ficolin binding to carbohydrates, 

both on the surfaces of pathogens. In contrast, the AP is constitutively activated at a low 

level in a process known as tick-over.3

All three pathways lead to the formation of C3 convertases that catalyze a proteolytic 

cleavage of complement component 3 (C3) into the potent anaphylatoxin C3a, and C3b, an 

opsonization molecule that can be further cleaved into C3d. C3b can also bind the cleaved 

form of factor B (FB, Bb) to form the AP C3 convertase (C3bBb) that will cleave more C3, 

initiating an amplification loop. Downstream in the cascade C5 convertases are formed, 

initiating the terminal pathway with the subsequent formation of additional activation 

products as well as the membrane-attack complex (MAC) that is responsible for cytolysis.4

The complement system can be rapidly amplified and therefore several inhibitory proteins 

such as complement factor H (FH) and complement factor I (FI) are in place regulating 

complement activity.4

Deregulation and deficiencies of the complement system have been reported to be 

associated with numerous inflammatory, autoimmune, neurodegenerative and infectious 

disorders.5 A prime example of a multifactorial disease associated with a deregulation of 

the complement system is age-related macular degeneration (AMD). AMD is characterized 

by a progressive degeneration of the central retina, and is responsible for the majority of 

vision loss in the elderly with a pooled prevalence of 8.9 %.6,7 AMD entails a major health 

problem as in 2020, the number of people affected by a form of this disease is projected at 

196 million, raising to 288 million in 2040.8 Several lines of evidence point towards an over-

activation of the complement system in AMD, mainly through a dysregulation of the AP. 

Multiple genetic variants in or near complement genes (CFH, C3, CFI, C2/CFB locus and C9) 

have been strongly associated with AMD.9,10 Moreover, complement components have been 

described in drusen, the hallmark of the disease,11-14 and complement activation fragments 

in plasma/serum such as Ba, C3a, C3d and C5a have been found to be significantly elevated 

in AMD patients compared to controls.15-21 Currently, there is no treatment available for the 

majority of AMD cases, nor is there an effective means to halt AMD progression. Therefore, 

therapies for AMD, as well as for other diseases involving complement deregulation, are 

being developed aiming to inhibit or lower complement activation.22-24



114 chapter 3

Systemic complement activation levels demonstrate considerable variation among 

individuals.16-20 As a consequence, patients who have higher levels of complement activation 

may benefit more than others from the upcoming therapies. A better understanding 

of the factors that influence complement activation would facilitate the selection of the 

most suitable patients for complement inhibiting therapies. Genetic markers are robust 

biomarkers that could be included in prediction models for complement activation. 

Several studies have previously evaluated the effect of genetic variation on complement 

activity; however, these studies were restricted to a limited number of single nucleotide 

polymorphisms (SNPs).16-19,21,25

The aim of this study was to perform the first genome-wide association study (GWAS) 

on systemic complement activation levels. Identification of genetic variants explaining 

complement activation levels will contribute to a better understanding of the molecular 

mechanisms of complement related diseases, will pinpoint potential drug targets, and will 

facilitate the selection of patients for complement inhibiting therapies. 

Results

Characteristics of the study cohorts

We evaluated the association of genetic variants with systemic complement activation 

levels through a GWAS in a discovery cohort of 1,548 individuals, followed by replication in 

an independent cohort of 697 individuals. For both cohorts, demographics and information 

about AMD disease status, body mass index (BMI), triglycerides and high-density 

lipoprotein (HDL)-cholesterol was collected (Table 1).

table 1  Demographics and other characteristics of the discovery and replication cohorts

Discovery cohort (n=1,548) Replication cohort (n=697)

Complement activation ln(c3d/c3), mean (SD) 1.459 (0.407) 1.464 (0.398)

Age, mean (SD) 73.2 (7.8) 73.3 (7.7)

Sex (female), % 60 58.8

AMD disease status (control), (%) 53.7 37.4

BMI kg/m2, median (quartiles) 25 (23 – 28) 25 (23 – 28)

Triglycerides mmol/l, median (quartiles) 1.620 (1.170 - 2.220) 1.620 (1.165 - 2.210)

HDL cholesterol mmol/l, mean (SD) 1.489 (0.377) 1.478 (0.403)

Clinic (Radboud university medical center), % 53.5 63

BMI=Body mass index, HDL=High-density lipoprotein, SD=standard deviation.
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table 2   General linear model for systemic complement activation levels including 
environmental factors

 β SE (β) P-value R2

Age (years) 0.003 0.001 0.002 0.010

Sex (female) -0.025 0.018 0.155 0

Disease status (AMD) 0.074 0.017 6.700x10-5 0.013

BMI (kg/m2) -0.012 0.002 8.635x10-8 0.034

Triglycerides (mmol/l) -0.130 0.010 5.723x10-39 0.101

HDL cholesterol (mmol/l) 0.015 0.026 0.545 0.024

Clinic (University Hospital of Cologne) -0.064 0.016 6.800x10-5 0.005

BMI=Body mass index, HDL=High-density lipoprotein, SE=standard error. 

R2=0.141 (adjusted R2=0.138).

 

Higher complement activation levels were associated independently with older age, 

AMD disease status, lower BMI and lower triglycerides levels as previously described.21,26 

Differences were also observed between the sample collection clinics (Table 2, available 

at www.aaojournal.org). Therefore, these factors were included as covariates in all 

consecutive analyses.

GWAS identifies two independent signals at the CFH/CFHR locus to 

be associated with systemic complement activation

We carried out a GWAS of normalized C3d/C3 levels as a measure of systemic complement 

activation. Following quality control, a total of 1,548 individuals and 9,972,920 variants 

were included in the analysis. The study had >80% of power to detect common variants 

(minor allele frequency ≥5%) explaining ≥2.6% of variance in complement activation levels.

A total of 280 variants reached genome-wide significance (Manhattan plot Fig. 1a, QQplot 

Fig. 2 (available at www.aaojournal.org), λ
GC

=0.999). All variants, except for one, were 

located on chromosome 1 at the CFH/CFHR locus (chr1:196.643.724-197.061.086). The 

only variant outside of this locus was located on chromosome 6 near the PSORS1C1 gene, 

but could not be verified by Sanger sequencing. SNP rs3753396 (c.2016A>G, p.Gln672Gln) 

located in exon 14 of the complement factor H (CFH) gene showed the strongest association 

with complement activation levels (P=1.09x10-15, β=0.145, SE=0.018, Table 3, locus zoom 

depicted in Fig. 1b).

Conditional analysis on the lead SNP revealed a second independent signal with a P 

value close to genome-wide significance for which the strongest associated variant was 

rs6685931. This SNP was also located at the CFH/CFHR locus, specifically in intron 1 (c.59-

4315T>C) of the complement factor H related 4 (CFHR4) gene (P=8.18x10-7, β=0.068, 

SE=0.014, Table 3, locus zoom depicted in Fig. 1c).
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figure 1  GWAS identifies two independent signals at the CFH/CFHR locus associated with 
systemic complement activation levels

(A) Manhattan plot illustrating the P-values of each individual SNP tested for association with systemic 

complement activation. The red horizontal line indicates the threshold considered for genome-wide 

significance (P=5x10-8). (B) Locus zoom plot showing a detailed view of the chromosome 1 signal. 

The lead SNP rs3753396, is located in the CFH gene. SNPs are colored based on their LD estimate (r2) 

to the lead SNP. (C) Locus zoom plot showing a detailed view of the signal on chromosome 1 after 

conditioning the association analysis for rs3753396. Here, the lead SNP rs6685931, is located in the 

CFHR4 gene. SNPs are colored based on their LD estimate (r2) to the lead SNP.

Variants shown to be associated with complement activation fragments in previous studies 

were extracted from the GWAS results.17,18 SNP rs800292 in CFH, and the two SNPs in 

linkage disequilibrium rs4151667 in CFB and rs9332739 in C2 were nominally associated 

with systemic complement activation levels in the current study, showing the same 

direction of the effect. SNP rs2230199 in C3 and SNP rs10490924 in ARMS2 could not be 

replicated (Table 4, available at www.aaojournal.org).
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figure 2  Q-Q plot of the GWAS on systemic complement activation levels 

Shown as black dots are the observed P-values (-log
10

(P)). Lack of population stratification was 

confirmed by a genomic inflation factor (λ) for the trend of 0.999.

Replication in an independent cohort confirms the effect of 

rs3753396 in CFH and rs6685931 in CFHR4 on systemic complement 

activation

Replication analysis of rs3753396 in CFH and rs6685931 in CFHR4 in an independent 

cohort of 697 study participants confirmed both variants to be significantly associated 

with systemic complement activation levels (rs3753396: P=1.39x10-6, β=0.131, SE=0.027, 

rs6685931: P= 8.62x10-3, β= 0.038, SE=0.014, Table 3). Subsequent meta-analysis showed 

associations for both rs3753396 (P=3.66x10-21, β=0.141, SE=0.015) and rs6685931 

(P=6.32x10-8, β=0.054, SE=0.010), confirming that two independent signals at the CFH/

CFHR locus are associated with higher complement activation levels (Table 3). Sensitivity 

analyses adjusting for AMD disease status showed comparable results (Table 5, available 

at www.aaojournal.org), and neither an interaction between clinic and the identified SNPs 

(P
rs3753396 x clinic

=0.436, P
rs6685931

 
x clinic

=0.676), nor an interaction between AMD status and the 

identified SNPs (P
rs3753396 x AMD

 status=0.557, P
rs6685931 x AMD

 status=0.658) was detected.

Next, mean complement activation levels in the genotype groups of rs373396 and 

rs6685931 were analyzed. For rs3753396 in CFH, the heterozygous AG genotype group 

showed higher complement activation levels compared to the reference AA genotype 

group (P=6.23x10-18, β=0.152, SE=0.018), and for the homozygous GG group these levels 

were even higher (P=2.39x10-7, β=0.267, SE=0.052, Fig. 3a). In the case of rs6685931 in 

CFHR4, a similar effect was observed: the heterozygous TC genotype group had higher 

complement activation levels than the reference TT genotype (P=10-3, β=0.063, SE=0.019) 

and for the homozygous CC group the levels were even higher (P=3.62x10-7, β=0.118, 

SE=0.023, Fig. 3b). Analysis of the cumulative effect of both SNPs showed that the main 

effect on systemic complement activation levels is driven by rs3753396 in CFH, and 

rs6685931 in CFHR4 introduces additional variation to the rs3753396 genotypes (Fig. 3c).
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figure 3   Systemic complement activation levels stratified by rs3753396 and rs6685931 
genotypes: rs6685931 introduces additional variation on the main effect of rs3753396

The Y axes represent the ln-transformed C3d/C3 as a measure of systemic complement activation. 

Horizontal bars indicate the mean values for each genotype group. The complement-raising alleles for 

both SNPs are indicated in red. Association analyses included the 2,245 individuals from the discovery 

and the replication cohorts. (A) Distribution of complement activation levels for each genotype of 

rs3753396 in CFH. (B) Distribution of complement activation levels for each genotype of rs6685931 in 

CFHR4. P-values were calculated adjusting the model for rs3753396. (C) Distribution of complement 

activation levels over the genotype combinations of rs3753396 in CFH and rs6685931 in CFHR4.
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A model of genetic and non-genetic variables explains 18.7% of the 

variability in complement activation

General linear models were built in order to determine how much of the variation could be 

explained by factors found to be associated with systemic complement activation. 

A model including only non-genetic factors (age, AMD disease status, BMI and triglycerides) 

explained 12.6% of the variability in systemic complement activation. With the addition of 

SNP rs3753396 to the model, 16.3% of the variability could be explained, and by including 

SNP rs6685931, a total of 17.3% was explained. We additionally incorporated SNPs 

associated with complement activation fragments in a previous study that replicated in our 

GWAS: rs800292 in CFH and rs9332739 in C2.18 Only rs9332739 remained independently 

associated with systemic complement activation levels, and the variance explained by the 

model rose to 18.7% (adjusted R2, Table 6).

table 6   A model of genetic and non-genetic variables explains 18.7% of the variability in 
systemic complement activation

β SE (β) P-value

CFH rs3753396                          AG 0.196 0.023 8.772x10-17

GG 0.330 0.066 6.461x10-7

CFHR4 rs6685931                             TC 0.070 0.024 0.003

CC 0.125 0.033 1.620x10-4

CFH rs800292                             GA -0.011 0.023 0.639

AA 0.027 0.046 0.555

C2 rs9332739                             GC -0.185 0.034 4.674x10-8

CC 0.168 0.213 0.431

Age (years) 0.004 0.001 0.005

Disease status (AMD) 0.035 0.020 0.089

BMI (kg/m2) -0.012 0.003 2x10-6

Triglycerides (mmol/l) -0.131 0.011 1.177x10-33

BMI=Body mass index, SE= Standard error.

R2=0.193 (adjusted R2=0.187). The model included the 1,548 individuals of the discovery phase.

Haplotypes across the CFH/CFHR locus have stronger effects on 

systemic complement activation levels compared to individual 

variants

In order to assess whether more variants at the CFH/CFHR locus influence systemic 

complement activation, and to determine the cumulative effect of several variants on the 

same haplotype, we evaluated the effect of distinct haplotypes across the CFH/CFHR locus 

on systemic complement activation.
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table 7   Association of haplotypes across the CFH/CFHR locus with systemic complement 
activation levels 

Haplotype Alleles 
CFH rs3753396 – CFHR4 rs6685931

HF β SE (β) P-value

H2 A-T 0.18 Reference Reference Reference

H1-2 A-C 0.36 0.062 0.019 1.148x10-3

H3 G-T 0.14 0.183 0.024 2.531x10-14

H4 A-T 0.10 0.013 0.026 0.607

H5 A-T 0.04 -0.058 0.038 0.128

H1-1 A-T 0.03 -0.053 0.043 0.218

H6 A-C 0.03 0.144 0.041 4.823x10-4

H7 A-C 0.03 0.060 0.046 0.192

H8 A-T 0.03 -0.007 0.048 0.890

HF=Haplotype frequency, SE=Standard error.

Haplotype association analyses with AMD were performed on the 1,548 individuals of the discovery 

cohort. Haplotypes are coded as in Hageman et al., 2005. If two different sub-haplotypes based 

on the extra allele in SNP rs6685931 were found, the Hageman haplotypes were recoded as 1 or 2. 

Alleles associated with higher complement levels are underlined. The reference haplotype was set to 

the most common haplotype not carrying any complement-raising allele for rs3753396 or rs6685931.

table 8  Predicted haplotypes across the CFH/CFHR locus

*SNPs in linkage disequilibrium (r2=1). †SNPs in linkage disequilibrium (r2=1).

Haplotypes are coded as in Hageman et al., 2005. If two different sub-haplotypes based on the extra 

allele in SNP rs6685931 were found, the Hageman haplotypes were recoded as 1 or 2.

Haplotype rs3753394 rs529825* rs800292* rs3766404 rs1061170 rs203674 rs3753396† rs1065489† rs6685931

H1-2 
(rs6685931-C)

C G G T C G A G C

H2 C A A T T T A G T

H3 T G G T T T G T T

H4 C G G C T T A G T

H5 T G G T T T A G T

H1-1 
(rs6685931-T)

C G G T C G A G T

H6 T G G T T G A G C

H7 T G G T C G A G C

H8 T G G C T T A G T
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table 9   Association of complement-raising SNPs and haplotypes with AMD: SNP rs6685931 
and haplotype H1-2 confer a risk for AMD

OR CI P-value

SNP rs3753396 1.031 0.839 - 1.223 0.756

SNP rs6685931 1.631 1.489 - 1.772 5.889x10-12

Haplotype H3 1.015 0.911 - 1.130 0.795

Haplotype H6 0.828 0.637 - 1.075 0.135

Haplotype H1-2 1.318 1.223 - 1.420 1.382x10-12

OR=Odds ratio, CI=Confidence interval.

Single variant and haplotype association analyses with AMD were performed on the 1,548 

individuals of the discovery cohort. Haplotype analyses were based on X2 tests that compared the 

frequency of the analyzed haplotypes in cases vs. controls.

 

Haplotypes previously described for AMD already included rs3753396, the lead variant 

associated in the GWAS,27 and were expanded by adding rs668593, the second independent 

signal. In total, seven SNPs across the CFH/CFHR locus yielded nine different haplotypes 

with a predicted population frequency higher than 1% (Table 7, Table 8 available at www.

aaojournal.org).

Association with systemic complement activation levels revealed haplotypes with 

stronger effects on complement activation compared to the single SNPs identified in the 

GWAS. Haplotypes H1-2, H3 and H6 were associated with higher systemic complement 

activation levels. Haplotype H3 carrying the complement-raising allele of rs3753396 (G) 

had a stronger effect on complement activation levels (P=2.53x10-14, β=0.183, SE=0.024) 

compared to the complement-raising allele of rs3753396 in the single variant analysis 

(β=0.141, SE=0.015). Haplotypes H1-2 and H6 both carried the complement-raising allele 

for rs6685931 (C). Haplotype H6 showed a stronger effect on complement activation levels 

(P=4.82x10-4, β=0.144 SE=0.041) compared to the single variant analysis for rs6685931 

(β=0.054, SE=0.010) (Table 7, Table 8 available at www.aaojournal.org).

SNP rs6685931 in CFHR4 and haplotype H1-2 confer a risk for AMD 

In order to identify genetic biomarkers that are relevant in the context of disease, we 

explored whether the SNPs and haplotypes associated with systemic complement 

activation levels associate also with AMD.

SNP rs3753396 in CFH was not associated with AMD (P=0.76). In contrast, the complement-

raising allele of rs6685931 in CFHR4 (C) was associated with an increased risk for AMD 

(P=5.89x10-12, OR=1.631 CI=1.489-1.772) (Table 9). These results are in concordance 

with the largest GWAS on AMD reported to date (rs3753396: P=3x10-3; rs6685931: 

P=1.02x10-495, OR>1).9
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figure 4   Complement activation levels stratified by common haplotypes across the CFH/
CFHR4 locus: the AMD risk haplotype H1-2 shows high complement activation 
levels, and the non-AMD-associated H3-1 haplotype shows the highest

Horizontal bars indicate the mean values for each haplotype carrier group. Haplotype carriers 

included in the graph had a posterior probability higher than 0.75. The haplotype group colors 

indicate the association with AMD: orange=protective, blue=risk conferring, grey=not associated. 

Association analyses were carried out on the 1,548 patients genotyped with exome-array.

table 10  Association of the 52 AMD variants with systemic complement activation levels

Variant* AMD risk-
increasing 

allele 

Locus name AF† β † SE (β) † P-value† P-value†‡

rs10922109 C CFH 0.629 0.089 0.013 5.389x10-11 1.406x10-9

rs570618 T CFH 0.421 -0.002 0.013 0.876 0.629

rs121913059§ T CFH - - - - -

rs148553336 T CFH 0.995 -0.128 0.097 0.186 0.219

rs187328863 T CFH 0.042 0.028 0.036 0.445 0.668

rs61818925 G CFH(CFHR3/CFHR1) 0.637 0.015 0.015 0.306 0.187

rs35292876 T CFH 0.016 0.031 0.052 0.550 0.648

rs191281603 G CFH 0.01 0.041 0.088 0.639 0.578

rs11884770 C COL4A3 0.738 -0.022 0.015 0.146 0.176

rs62247658 C ADAMTS9-AS2 0.417 0.007 0.013 0.616 0.475

rs140647181 C COL8A1 0.018 -0.092 0.057 0.109 0.106

rs55975637 A COL8A1 0.129 -0.015 0.020 0.473 0.427

rs10033900 T CFI 0.495 0.004 0.014 0.762 0.664

rs141853578 T CFI 0.003 0.292 0.133 0.028 0.042

rs62358361 T C9 0.014 0.025 0.057 0.668 0.742

rs114092250 G PRLR/SPEF2 0.975 -0.046 0.045 0.300 0.297

rs116503776 G C2/CFB/SKIV2L 0.872 0.059 0.020 0.003 0.005

rs144629244 A C2/CFB/SKIV2L 0.010 0.067 0.065 0.300 0.360
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AF= Allele frequency, SE= Standard error.

*Location of the SNP as in Fritsche et al., 2016, †Refers to the AMD risk-increasing allele, ‡Analysis 

adjusted for AMD disease status, §Variant not found in the study cohort. 

In agreement with the single variant analysis of CFH rs3753396, the haplotype H3 that gave 

the highest risk for higher systemic complement activation was not associated with AMD 

(P=0.80). Haplotype H6 carries the CFHR4 rs6685931 complement-raising allele (C) but did 

not reach significance in the association with AMD (P=0.14); however the frequency of H6 

was relatively low (3%). Haplotype H1-2, the most common haplotype carrying the CFHR4 

rs6685931 complement-raising allele (C), showed a strong risk-conferring association with 

AMD (P=1.38x10-12, OR=1.318 CI=1.223-1.420) (Table 9, Fig. 4).

rs114254831 G C2/CFB/SKIV2L 0.242 -0.01 0.015 0.508 0.426

rs181705462 T C2/CFB/SKIV2L 0.008 -0.008 0.075 0.921 0.877

rs943080 T VEGFA 0.510 -0.026 0.013 0.056 0.075

rs1142 T KMT2E/SRPK2 0.371 0.002 0.014 0.883 0.948

rs7803454 T PILRB/PILRA 0.184 -0.01 0.017 0.574 0.484

rs79037040 T TNFRSF10A 0.518 0.011 0.013 0.411 0.338

rs10781182 T MIR6130/RORB 0.301 -0.008 0.015 0.594 0.701

rs71507014 G TRPM3 0.421 -0.005 0.014 0.732 0.724

rs1626340 G TGFBR1 0.793 -0.009 0.017 0.598 0.468

rs2740488 A ABCA1 0.740 -0.009 0.015 0.555 0.403

rs12357257 A ARHGAP21 0.238 -0.001 0.016 0.927 0.915

rs3750846 C ARMS2/HTRA1 0.297 0.01 0.014 0.468 0.866

rs3138141 A RDH5/CD63 0.210 0.046 0.021 0.030 0.045

rs61941274 A ACAD10 0.013 0.003 0.072 0.971 0.980

rs9564692 C B3GALTL 0.727 -0.008 0.015 0.618 0.506

rs61985136 T RAD51B 0.619 0.007 0.014 0.620 0.541

rs2842339 G RAD51B 0.095 0 0.023 0.994 0.975

rs2043085 T LIPC 0.616 0.029 0.014 0.036 0.039

rs2070895 G LIPC 0.800 -0.03 0.017 0.071 0.062

rs5817082 C CETP 0.745 0.017 0.016 0.284 0.402

rs17231506 T CETP 0.326 -0.001 0.014 0.924 0.723

rs72802342 C CTRB2/CTRB1 0.929 0.003 0.028 0.914 0.932

rs11080055 C TMEM97/VTN 0.503 0.015 0.013 0.246 0.206

rs6565597 T NPLOC4/TSPAN10 0.391 0.003 0.015 0.824 0.862

rs2230199 G C3 0.224 -0.034 0.017 0.044 0.060

rs147859257 G C3 0.006 0.098 0.089 0.270 0.385

rs12019136 G C3(NRTN/FUT6) 0.958 -0.012 0.035 0.740 0.689

rs67538026 C CNN2 0.556 0.001 0.015 0.960 0.900

rs429358 T APOE 0.883 0.022 0.021 0.311 0.294

rs73036519 G APOE(EXOC3L2/MARK4) 0.697 0.012 0.015 0.453 0.477

rs142450006 TTTTC MMP9 0.858 0.009 0.020 0.667 0.705

rs201459901 T C20orf85 0.948 -0.024 0.030 0.425 0.444

rs5754227 T SYN3/TIMP3 0.871 -0.003 0.020 0.895 0.796

rs8135665 T SLC16A8 0.210 0.003 0.016 0.853 0.973
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Finally, we determined whether other AMD-associated variants are associated with 

systemic complement activation levels. For this purpose, we extracted the 52 AMD-

associated variants reported in the largest AMD study performed so far from the GWAS 

on complement activation levels.9 However, no variants outside of the CFH/CFHR locus 

were found to be associated with systemic complement activation levels at the genome-

wide significance level, nor at a suggestive significance level of P<0.05/52=0.001 (Table 

10, available at www.aaojournal.org). Interestingly, a risk score based on the 52 AMD 

risk-conferring alleles associated with higher levels of complement activation (P=0.043, 

β=0.004, SE(β)=0.002). A similar risk score including only the variants located in or 

near complement genes was more strongly associated with higher levels of complement 

activation (P=0.022, β=0.009, SE(β)=0.004). This complement risk score included three 

nominally associated variants: two common variants located in the CFH and C2/CFB/

SKIV2L loci: rs10922109 and rs116503776 respectively, and a rare variant located in the 

CFI gene: rs141853578 or p.Gly119Arg. However, the effects of these genetic risk scores 

are smaller compared to the single variant effects in the model for systemic complement 

activation described in Table 6.

Discussion

We conducted a GWAS on systemic complement activation levels, evaluating for the first 

time in an unbiased approach the genetic risk factors involved in the activation of this 

essential component of the immune system. We identified and replicated two common 

variants, rs3753396 and rs6685931, that lead to higher systemic complement activation 

levels independently of age, sex, AMD disease status, triglycerides and body mass index. 

These two variants were included in a model for systemic complement activation, which 

explained 18.7% of its variability.

SNP rs3753396 (c.2016A>G, p.Gln672Gln) is a coding, synonymous variant located in exon 

14 of the CFH gene, and therefore this variant, or the linked causal variant(s), may regulate 

complement activation levels through FH. Factor H is a key negative regulator of the AP and 

the amplification loop of the complement cascade, which is expressed constitutively in 

the liver and locally by other cell types, such as retinal pigment epithelial and endothelial 

cells.28-30 Evidence to support the theory that rs3753396 exerts an effect on complement 

activation through FH comes from genetic studies on other diseases. SNP rs3753396 has 

been reported to be associated with atypical hemolytic uremic syndrome (aHUS), known 

to be caused by mutations in CFH.31,32 Moreover, reduced susceptibility to meningococcal 

disease has also been associated with rs3753396. Meningococcal disease is caused by 

Neisseria meningitides, which binds FH to avoid complement-mediated killing.33 SNP 

rs3753396 is in linkage disequilibrium (LD) with rs1065489, also located in CFH (c.2808G>T, 

p.Glu936Asp), which was proposed to be the causal variant for meningococcal disease 

based on in-silico pathogenicity predictions.34 
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SNP rs6685931 (c.59-4315T>C) is located in intron 1 of the CFHR4 gene. Factor H related-4 

(FHR-4) is a glycoprotein that, in contrast to the attenuating effects of FH, seems to promote 

complement activation. It binds the complement fluid-phase C3b and forms an additional 

AP C3 convertase (CFHR4-C3bBb), which is less susceptible to FH-mediated decay.35 

However, since rs6685931 is in high LD (r2>0.8) with several variants located in the CFH 

gene, either FH or FHR-4 could be responsible for the effects observed on complement 

activation.

We analyzed the association of genetic variants with systemic complement activation 

levels in a hypothesis-free manner. The results indicate that with our study design, the 

genetic variants with the largest effect on complement activation levels are rs3753396 and 

rs668593, located at the CFH/CFHR locus. Moreover, other previously associated variants 

in CFH and C2/CFB could be replicated.18 Haplotype analysis at the CFH/CFHR locus 

revealed two haplotypes with stronger effects on complement activation levels compared 

to the individual SNPs. These findings suggest that additional variants at the CFH/CFHR 

locus play a role in the activation of the complement system. Indeed, several rare coding 

variants in the CFH gene have been shown to lead to increased complement activity.10 

Genetic variants in other genes that influence systemic complement activation levels 

may be uncovered with larger sample sizes which would allow for the detection of rarer 

variants and smaller effects. A compelling rare variant candidate which may merit further 

investigation is CFI rs141853578 (p.Gly119Arg), which was found nominally significant in 

our study. This variant has been previously associated with lower FI levels in plasma, and a 

lower ability to degrade C3d on the cell surface and C3b in the fluid phase.36

In this study, AMD was associated with systemic complement activation, which is an 

agreement with previous reports.15-18,20 In our analysis, rs6685931 in CFHR4 was associated 

with both systemic complement activation and AMD. Haplotype analyses were in line 

with these results; we observed that the complement-raising allele of SNP rs6685931 (C) 

was located mainly on the H1-2 haplotype, which associated with a higher risk for AMD 

development. Thus, this SNP and its linked haplotype could serve as a robust biomarker for 

complement activation in the context of AMD, and could be used to identify AMD patients 

that would benefit most from complement inhibiting therapies.

We noted that the rare haplotype H6 (with a frequency of 3%), also containing rs6685931, 

had a larger effect on complement activation levels compared to the single variant 

rs6685931. However, haplotype H6 was not significantly associated with AMD probably 

due to statistical power limitations. Studies with larger cohort sizes may clarify the role of 

the H6 haplotype in AMD, and may identify other rare haplotypes that associate with AMD 

and have larger effects on complement activation levels.

Strikingly, the genetic variant that was most strongly associated with systemic complement 

activation, rs3753396 in CFH, and its main haplotype (H3) did not associate with AMD. 

SNP rs3753396 and haplotype H3 have been, however, described to confer risk for aHUS 

development. aHUS is a complement system related disease that leads to systemic 
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thrombotic microangiopathy and renal endothelial injury.32,37 This finding suggests that the 

effect of the haplotypes might be different systemically compared to the AMD disease site, 

possibly through a tissue-specific effect of the genetic variants. Consequently, systemic 

complement activation may not always reflect complement activation in the disease tissue 

and, therefore, it may not be the most appropriate measure for AMD studies. Genetic 

biomarkers such as SNP rs6685931 and haplotype H1-2 are a robust markers that, together 

with the C3d/C3 ratio, could serve as biomarkers for complement activity studies in AMD. 

This is supported by a recent study demonstrating that complement activation levels in 

aqueous humor are higher than in plasma samples of AMD patients.38 As a consequence, 

the effect of rs6685931 and H1-2 on local complement activation might be even larger than 

the effect seen on systemic levels.

Our results could also further the understanding of other complement-related diseases, 

as well as be used in the context of personalized medicine involving FH supplementation 

therapy and other complement-targeting therapies.39-41 Besides Neisseria meningitidis, a 

number of bacteria, fungi, parasites and viruses bind FH in order to avoid elimination by the 

alternative pathway of complement system.42 Also, some cancer cells express FH in order 

to avoid being targeted by the immune system.43-45 Other FH related diseases for which our 

results may be of interest include HUS, aHUS, encephalomyelitis, atherosclerosis, insulin 

resistance, IgA nephropathy, Alzheimer’s disease, cisplatin nephropathy as well as severe 

dengue, for which variants in the CFH gene have been shown to be protective.46

In conclusion, we have identified two common variants located at the CFH/CFHR locus, 

rs3753396 and rs668593, which strongly influence systemic complement activation levels. 

Moreover, our haplotype studies suggest that other genetic variants in the CFH/CFHR locus 

influence systemic complement activation. Genetic and non-genetic factors identified 

in this and other studies explain up to 18.7% of the variability in systemic complement 

activation levels. The common variant rs6685931 in CFHR4, and its associated haplotype 

H1-2, could be used, together with other environmental factors as well as rare genetic 

variants, to select AMD patients that would benefit from complement inhibiting therapies.

Methods

Study population

In this study, we included 2,245 participants from the European Genetic Database 

(EUGENDA, www.eugenda.org). EUGENDA is a multicenter database for the clinical and 

molecular analysis of AMD collected at the Radboud University medical center in Nijmegen 

and at the University Hospital of Cologne. The study participants were separated in two 

cohorts: a discovery cohort who comprised 1,548 individuals and a replication cohort of 

697 individuals.
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The study was performed in accordance with the tenets of the Declaration of Helsinki (7th 

revision) and the Medical Research Involving Human Subjects Act (WMO). Approval of the 

local ethics committee of both University hospitals was obtained and written informed 

consents were acquired from all participants. All the individuals included in the study 

agreed to the performed serum measurements and genotyping. All participants were of 

European descent and over the age of 50 years. AMD and control status were assigned 

by multimodal image grading according to the standard protocol of the Cologne Image 

Reading Center (CIRCL) by certified graders. Age, gender, height and weight were obtained 

by standardized interviewer-assisted questionnaires.

Serum complement and lipid measurements

Serum was obtained by a standard coagulation/centrifugation protocol, and within 1 hour 

after collection the samples were stored at –80°C.

Triglycerides and HDL cholesterol were measured using standard procedures by a 

clinical chemistry laboratory (Architect Analyzer, Abbott Diagnostics Hoofddorp, The 

Netherlands). Complement component C3 was assessed by radial immunodiffusion (or 

Mancini method) using mono specific polyclonal rabbit antisera, and C3d was measured by 

rocket electrophoresis, as previously described.21 C3d is a fragment of C3 generated upon 

activation of the system and, therefore, a direct measurement of complement turnover.4 

Moreover, C3d has the longest half life of all C3 split products.47 The C3d/C3 ratio is a 

sensitive way of assessing the activation of the complement system independently of the 

baseline individual C3 concentration.48-50 The C3d/C3 ratio has been previously described 

to be a robust biomarker for complement activation in AMD studies.19 The different 

measurements were performed for all samples in a single assay.

Genotyping

Genomic DNA was extracted from peripheral blood samples using standard procedures. 

The discovery cohort was genotyped with a custom-designed HumanCoreExome array 

by Illumina within the International AMD Genetics Consortium (IAMDGC). All the details 

regarding the design of the array, annotation, imputation and quality control of the 

genotypic data have been previously described.9

Imputed lead variants in GWAS peaks that reached significance, rs6685931 and rs3130572, 

were confirmed by polymerase chain reaction and Sanger sequencing. SNP rs6685931 was 

evaluated in 12 individuals representing the three genotypes and a 100% of concordance 

with the imputed genotypes was achieved. SNP rs3130572 (chromosome 6) was located in 

a highly repetitive region and specific primers could not be designed, therefore, this SNP 

was excluded from further analysis.
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In the replication cohort, CFH rs3753396 and CFHR4 rs6685931 were genotyped using 

competitive allele-specific PCR assays according to the manufacturer instructions (KASP 

genotyping chemistry, LGC, Hoddesdon, UK).

Statistical analysis

Natural log transformation was applied to normalize the skewed distribution of C3d/C3 

measurements. A general linear model for ln(C3d/C3) including as independent variables 

the environmental factors collected was used to determine potential confounders. The 

R-squared and adjusted R-squared statistics were estimated for the model. Additionally, 

the R-squared statistic was estimated for each of the independent factors individually, 

performing separate models. Analyses were carried out using SPSS software version 20.0 

(IBM Software and Systems, Armonk, NY, USA).

A power calculation for the GWAS was performed using the Genetic power calculator.51 

Association tests in the GWAS and replication analyses were performed by means of a 

linear Wald test from EPACTS software (http://genome.sph.umich.edu/wiki/EPACTS) 

using allele dosages. Linear regression models adjusted for age, sex, BMI, triglycerides, 

clinic and the first two ancestry principal components were used. Manhattan and Q-Q 

plots were generated using the ‘qqman’ R package (version 0.1.2). The regional plots for 

chromosome 1, were generated using LocusZoom.52

Meta-analysis of fixed effects based on effect size estimates and standard errors was 

performed using METAL software (version 2-11-03-25).53

Evaluation of an interaction between the identified SNPs and clinic or AMD status was 

performed including an interaction parameter on the general linear model and assessing 

nominal significance.

Comparisons of systemic complement activation levels between the genotype groups 

were performed using a general linear model adjusted for age, BMI, triglycerides and clinic 

including both the discovery and the replication cohorts. SPSS software version 20.0 (IBM 

Software and Systems, Armonk, NY, USA) was used for these analyses.

In order to estimate how much of the variation in systemic complement activation could 

be explained by the identified factors, general linear models for systemic complement 

activation were performed using SPSS software version 20.0 (IBM Software and Systems, 

Armonk, NY, USA). Only the 1,548 individuals from the discovery cohort were included in 

order to accommodate the CFH rs800292 and C2 rs9332739 SNPs, which were not analyzed 

in the replication cohort. The adjusted R-squared statistic was estimated for the models.

Haplotype analysis was carried out on the 1,548 patients genotyped with exome-arrays 

using the haplo.glm function of the R library ‘haplo.stats’ (version 1.7.7). Analysis was 
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performed based on a general linear model adjusted for age, sex, BMI, triglycerides, clinic 

and the first two ancestry principal components.

Single variant and haplotype association analyses with AMD were performed on the 1,548 

individuals of the discovery cohort. Single variant analyses were performed using a Firth 

bias-corrected likelihood-ratio test with EPACTS software (http://genome.sph.umich.edu/

wiki/EPACTS). Haplotype analyses were based on X2 tests including haplotypes with a 

predicted probability ≥0.75 using SPSS software version 20.0 (IBM Software and Systems, 

Armonk, NY, USA).

Risk scores for AMD-associated variants were calculated as a sum of the number of AMD 

risk-increasing alleles. Two risk scores were calculated: the first risk score included the 

52 AMD-associated variants described in Fritsche et al., 2016, and the second risk score 

included the 19 variants located in or near complement genes out of these 52. The variants 

included in the complement risk score were: rs10922109, rs570618, rs121913059, 

rs148553336, rs187328863, rs61818925, rs35292876 and rs191281603 from the 

CFH locus; rs10033900 and rs141853578 from the CFI locus; rs62358361 from the C9 

locus; rs116503776, rs144629244, rs114254831 and rs181705462 from the C2/CFB/

SKIV2L locus; rs147859257 from the TMEM97/VTN locus; rs2230199, rs147859257 and 

rs12019136 from the C3 locus. The risk scores were included in linear models for ln(C3d/

C3) that included age, BMI, triglycerides and clinic as covariates, and the effect of the risk 

score was estimated. The 1,548 individuals of the discovery phase, genotyped with the 

HumanCoreExome array, were included in these analyses.

Figures including graphs were generated using Graphpad Prism 5.03 (GraphPad Software, 

La Jolla California USA). 
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Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly 

in the Western world. However, the exact mechanisms underlying this disease are not 

fully understood yet. An over-activation of the complement system has been proven to be 

involved in the pathogenesis of AMD. Genetic studies have identified variants spanning the 

CFH/CFHR locus to be associated with AMD development, but the effect of these variants on 

protein expression or function of Factor H (FH) or the Factor H related proteins remains to be 

determined. A recent genome-wide association study on systemic complement activation in 

AMD described a SNP located in the CFHR4 gene as the top associated variant. Therefore, we 

hypothesized that FHR-4 could be directly implicated in AMD pathogenesis. 

In this study, we show that FHR-4 accumulates in the choriocapillaris, partially diffuses 

through the Bruch’s membrane and can be detected in drusen. Additionally, FHR-4 activates 

the complement system by competing off FH and factor I binding to C3b. Whereas expression 

of FHR4 was not detected in the retinal pigment epithelium and choroid, evaluation  

of systemic FHR-4 shows elevated levels in advanced AMD cases compared to controls  

(β = 0.21, CI = 0.12 – 0.30, P = 7.1 x 10-6). Systemic FH levels, however, do not show any 

difference (P = 0.70). We also evaluated the AMD-associated variants at the CFH/CFHR 

locus for association with FHR-4 levels. The AMD-risk conferring alleles of rs10922109, 

rs187328863 and rs61818925 showed an association with increased FHR-4 levels 

independently of AMD status (P = 6.5 x 10-52, P = 2.7 x 10-5 and P = 8.2 x 10-18 respectively). 

The SNP rs570618, which is in high linkage disequilibrium with the p.Y402H variant, showed 

an association with lower FHR-4 levels (P = 2.5 x 10-14). Haplotype analysis of these variants 

revealed two haplotypes associated with AMD, which showed a protective effect (H2 and 

H3). The H2 and H3 haplotypes were also highly associated with decreasing FHR-4 levels, 

independently of AMD status (β = -0.46, CI = -0.52 – -0.39, P = 4.7 x 10-42 and β = -0.24,  

CI = -0.31 – -0.16, P = 1.2 x 10-9, respectively). A genome-wide association analysis on systemic 

FHR-4 levels revealed only the CFH/CFHR locus as significantly associated. Altogether, our 

findings suggest that FHR-4 is a new component of the complement cascade involved in the 

pathogenesis of AMD and a compelling new therapeutic target.
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Introduction

Age-related macular degeneration (AMD) is a highly prevalent cause of vision loss that 

is predicted to affect 196 million people worldwide by 20201. The condition results in 

destruction of the central retina, i.e. the macula, where initial changes occur in the retinal 

pigment epithelium/Bruch’s membrane (BrM)/choriocapillaris complex. In early AMD soft 

drusen are observed (Fig. 1a), which are accumulations of debris within BrM. Progress to 

late AMD is associated with visual loss and this can manifest as either geographic atrophy 

(commonly referred to as ‘dry’ AMD) or choroidal neovascularisation (or ‘wet’ AMD)2. 

AMD has a strong genetic basis and at least 34 genetic loci have been associated with this 

condition3. Several genes encoding components of the complement cascade are associated 

with AMD and the strongest effect is seen at the regulator of complement activation 

locus on chromosome 1 which encodes CFH and CFHR1-54,5. The CFH gene encodes both 

factor H (FH) and a smaller splice variant called factor H-like protein 1 (FHL-1)6,7. While FH 

is the main blood borne regulator of complement activation, FHL-1 predominates in the 

BrM and extracellular matrix (ECM) in between the vessels of the choriocapillaris, i.e. the 

intercapillary septa (Fig. 1a)4,8. The identification of rare coding variants in CFH implicated 

this gene in AMD9,10, but due to extensive linkage disequilibrium, the reason why common 

variants at the CFH/CFHR locus are associated with altered AMD risk remains elusive. 

Genetic variants located in the CFHR4 gene and haplotypes delineated by single nucleotide 

polymorphism (SNPs) within and downstream of CFHR4 have been shown to influence 

AMD disease risk11,12. Moreover, a genome-wide association study (GWAS) on systemic 

complement activation in the context of AMD has recently identified a variant in the CFHR4 

gene as the top SNP associated with higher systemic complement activation and a higher 

risk for AMD development (see chapter 3.1), which raises the possibility that this gene 

could be implicated in AMD. Furthermore, the factor H-related 4 (FHR-4) protein encoded 

by CFHR4, has been shown to promote complement activation by forming a platform for the 

assembly of alternative pathway C3 convertase13,14. Therefore, in this study we examined 

the role of FHR-4 in AMD.

Results

FHR-4 accumulation in the choriocapillaris drives complement 

activation

In order to assess whether FHR-4 localizes at the AMD disease site, immunohistochemistry 

experiments were performed on retinas of post-mortem donor eyes affected with AMD. 

Using a specific monoclonal antibody against FHR-4 (Extended data Fig. 1 and 2) we 

observed the protein accumulating in the choriocapillaris and Bruch’s membrane (BrM), 

particularly localizing to the intercapillary septa: the extracellular matrix (ECM) between 
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figure 1  Accumulation of FHR-4 in the eye inhibits C3b breakdown. 

a) Schematic diagram showing anatomical structures in the macula including the retinal pigment 

epithelium (RPE), the underlying Bruch’s membrane (BrM), the choriocapillaris and the intercapillary 

septa (pillars of extracellular matrix that separate the fenestrated capillaries of the choriocapillaris); 

basement membranes are represented as black lines. Drusen, the hallmark lesions of early AMD, 

form within BrM, underneath the RPE basement membrane. b-c) Immunohistochemistry showing 

the localization of FHR-4 (yellow) which is particularly evident in the intercapillary septa of the 

choriocapillaris, but weak labeling is also seen within BrM: collagen IV staining is used to delineate 

basement membranes which define the inner and outer borders of BrM (red), DAPI labeling is in 

blue. d) FHR-4 is also localized in drusen. e) Both FHR-4 and C3/C3b localize in the intercapillary 

septa of the choriocapillaris (white arrow): scale bars 20µm. f) SPR analysis showing the binding 

of FHR-4 to immobilized C3b. g) Solid phase binding assays demonstrate that the binding of fluid 

phase FH or FHL-1 to immobilized C3b can be competed off with increasing concentrations of FHR-4. 

h) Measurement of factor H-like protein 1 (FHL-1) mediated breakdown of C3b by factor I (FI); in the 

presence of fixed concentrations of C3b and FI, increasing concentrations of FHL-1 result in increased 

breakdown of the C3b α-chain as measured by analyzing the intensity of Coomassie-blue stained 

bands following SDS-PAGE (Extended data Fig. 3). i) Optimal C3b breakdown conditions from (h) are 

repeated but now including increased concentrations of fluid-phase FHR-4, and an inhibition of FHL-

1/FI-mediated C3b α-chain breakdown is observed. j) Mean systemic levels of FHR-4 are higher in 

subjects with AMD compared to non-AMD controls.
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the fenestrated capillaries of the choriocapillaris (Fig. 1a-c). Weak staining for FHR-4 within 

BrM indicates that the protein can penetrate in some degree into the ECM (Fig. 1c), but 

diffusion experiments with BrM and purified protein indicated that it does not pass through 

completely (Extended data Fig. 3). In addition, staining of drusen showed immunoreactivity 

for FHR-4 (Fig. 1d). C3/C3b localized to the intercapillary septa of the choriocapillaris as well 

as FHR-4 (Fig. 1e). FHR-4 has previously been shown to bind C3b and form an alternative C3b 

convertase13,15. We confirmed that FHR-4 binds immobilized C3b (Fig. 1f ) and demonstrated 

that FHR-4 can compete off the binding of both negative regulators of complement activation 

FH and FHL-1 to immobilized C3b in solid-phase binding assays (Fig. 1g). 

Given that FHR-4 binds to C3b and out-competes the binding of FHL-1, the complement 

regulator responsible for protecting the intercapillary septa from aberrant complement 

activation4,8, we investigated whether FHR-4 could inhibit C3b breakdown mediated by FHL-1 

and FI, employing fluid-phase C3b breakdown assays where the cleavage of the C3b α-chain 

was used as a readout. Using conditions in which ~80% C3b α-chain breakdown is achieved 

in the absence of FHR-4, we found that adding increasing concentrations of FHR-4 resulted 

in a progressive inhibition of C3b α-chain breakdown; where only ~50% C3b breakdown 

occurred at a 2.5 molar excess of FHR-4 over FHL-1(Fig. 1h and i and Extended data Fig. 4). 

Systemic FHR-4 levels are elevated in advanced AMD cases

Next we investigated the source of FHR-4 observed in the intercapillary septa. Transcription 

of the CFHR4 gene was not detected in the RPE or in the choroid of human eyes (data not 

shown). Therefore, we concluded that the observed FHR-4 protein was derived from the 

systemic circulation and passed from the choriocapillaris into the surrounding ECM. Using 

a FHR-4 specific ELISA, we measured circulating FHR-4 concentration in a total of 484 

advanced AMD patients (with geographic atrophy and/or choroidal neovascularization) 

and 522 examined controls, collected within two independent AMD studies (Cambridge 

and EUGENDA, Table 1). Patients with AMD showed a significant elevation of FHR-4 levels 

compared to controls, both in each study separately (Table 1) and in the meta-analysis 

(overall sex- and age-adjusted: β = 0.21, CI = 0.12 – 0.30, P = 7.1 x 10-6; Table 1, Fig. 2), 

whilst there was no difference in FH levels between AMD patients and controls (overall sex- 

and age-adjusted β = 0.01, CI = -0.02 – 0.04, P = 0.70; Table 1, Fig. 1j). 

AMD-associated variants at the CFH/CFHR locus are associated 

with systemic FHR-4 levels

A recent large GWAS of AMD conducted by the International AMD Genomics Consortium 

reported 52 independently associated variants across 34 AMD risk loci, including 8 variants 

at the CFH/CFHR locus. We hypothesized that any of these 8 genetic variants (single or in 

combination) may be associated with systemic FHR-4 levels that in turn are increased in 

AMD patients. 
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One of the 8 variants is the highly penetrant rare variant p.R1210C. This variant was only 

present heterozygously in one individual belonging to the Cambridge cohort, and therefore 

was not included in the genetic association analyses. Out of the 7 evaluated variants, single-

SNP association analyses revealed a strong association with FHR-4 levels, independently 

of AMD status, for four variants: SNPs rs10922109 (β = -0.41, CI = -0.46 – -0.35, P = 6.5 

x 10-52), rs570618 (β = -0.21, CI = -0.27 – -0.16, P = 2.5 x 10-14), rs187328863 (β = 0.32, 

CI = 0.17 – 0.47, P = 2.7 x 10-5) and rs61818925 (β = -0.25, CI = -0.30 – -0.19, P = 8.2 x 

10-18). The AMD-risk alleles were associated with higher FHR-4 levels except rs570618, for 

which increasing disease risk allele G was associated with decreased FHR-4 levels. SNP 

rs148553336 showed only a nominally significant association with FHR-4 levels (β = 0.50, 

CI = 0.05 – 0.94, P = 0.028), which was not significant after correction for 7 tests and the 

other two SNPs, rs35292876 and rs191281603, were not associated (P = 0.053 and P = 

0.199, respectively, Table 2). 

Haplotype analysis at the CFH/CFHR locus reveals haplotypes 

strongly associated both with AMD and FHR-4 levels

In order to determine the cumulative effect of several variants on the same haplotype, 

we extracted the haplotypes formed by the 7 AMD-associated variants at the CFH/CFHR 

locus using the phased genotype data produced within the GWAS of the IAMDGC study3. 

Haplotype-based analyses were performed to assess the association of the observed 

haplotypes with AMD and with FHR-4 levels in each cohort separately, and corresponding 

results were meta-analysed. We observed 8 haplotypes with an overall frequency greater 

than 1% in the two cohorts combined (Table 3). Using the most common haplotype 

CTTCCGC (H1; 50% in cases, 32% in controls) as reference, we found two AMD protective 

haplotypes, CTGACTC (H2; OR = 0.36 , CI = 0.28-0.48, P = 3.0 x 10-13) and CTGACGC 

(H3; OR = 0.29, CI = 0.21-0.40, P = 6.5 x 10-14). Haplotypes H2 and H3 were also highly 

associated with decreasing FHR-4 levels, independently of AMD status (β = -0.46, CI = 

-0.52 – -0.39, P = 4.7 x 10-42; β = -0.24, CI = -0.31 – -0.16, P = 1.2 x 10-9, respectively). 

These two haplotypes contain the AMD protective and FHR-4 lowering allele A of the top 

IAMDGC SNP rs10922109. While both haplotypes differ from the reference H1 also for the 

presence of FHR-4 lowering allele G of rs570618 (i.e., the second top IAMDGC SNP), only 

H2 contains additionally the FHR-4 lowering allele T of rs61818925. In addition, two other 

haplotypes showed an association with FHR-4 despite not being associated with AMD: 

TTTCCGC (H6) and CTTCCTC (H7). The haplotype H6 showed an association with higher 

levels of FHR-4 (β = 0.28, CI = 0.15 – 0.41, P = 3.9 x 10-5). This haplotype differed from 

the reference haplotype on the presence of the FHR-4-raising allele T in rs187328863. The 

rarer haplotype H7 showed an association with lower FH4-levels (β = -0.34, CI = -0.57 – 

-0.10, P = 0.005), and differed from the reference haplotype on the presence of the FHR-4-

lowering allele T of rs61818925. The remaining haplotypes (H4, H5 and H8) did not show 

a significant association with FHR-4 levels after Bonferroni correction for multiple testing.
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No locus other than CFH/CFHR shows genome-wide level 

association with FHR-4 levels

To assess whether genetic variants associated with systemic FHR-4 levels exist at loci other 

than CFH/CFHR, we also performed a (hypothesis-free) GWAS for FHR-4 levels. The analysis 

was performed separately in the Cambridge and EUGENDA cohorts, and the results were 

combined in a meta-analysis. Genotype data on a total of 9,160,410 were available from 

the IAMDGC study for the 1,005 individuals included in this study.3 This analysis had 

>80% power to detect associations of genetic variants with a minor allele frequency ≥5% 

explaining ≥3.9% of variance in FHR-4 levels.

Through linear regression models adjusted for age, sex and the first two ancestry principal 

components, we identified a total of 701 variants that reached genome-wide significance 

(P < 5 x 10-8) (Fig. 2, Supplementary Fig. 5). These variants were all located on chromosome 

1 spanning the CFH/CFHR locus (chr1:196,240,335–197,275,153, according to the 

GRCh38 genome assembly). The top signals of association with FHR-4 levels were at SNPs 

rs7535263, rs10737680 and rs2274700 (β = -0.195, CI = -0.219 – -0.171, P = 1.4 x 10-55 

for all three variants). These variants are located in the CFH gene (rs7535263, intron 9, 

c.1337-519G>A; rs10737680, intron 9, c.1337-3410A>C; rs2274700, exon 10, p.Ala473=, 

Figure 2). Sensitivity analysis adjusting additionally for AMD status revealed comparable 

results with the same top three associated SNPs rs7535263, rs10737680 and rs2274700 

(P = 8.9 x 10-50 for all three variants; Fig. 2, Supplementary Fig. 5), and no other locus 

showed genome-wide significant associations. 

Discussion

In this study, we aimed to assess whether FHR-4 may play a role in AMD pathology. We 

found that FHR-4 localizes at the AMD disease site as it is present in drusen and in the BrM, 

specifically at the intercapillary septa. We did not detect FHR-4 expression in the RPE nor 

in the choroid, and the systemic circulation may be the source of the FHR-4 detected in 

the intercapillary septa. Systemic levels of FHR-4 were higher in AMD patients compared 

to controls; therefore FHR-4 levels could be used as a biomarker for the disease. This 

contrasts with the results for FH, for which differences in systemic levels between cases 

and controls were not detected. Several studies had previously evaluated systemic levels 

of FH and contradictory results had been published16-24. The largest studies performed so 

far were by Ansari et al., Silva et al. and Smailhodzic et al. Ansari et al. compared 382 cases 

vs. 201 controls and reported lower FH levels in AMD patients20. In contrast, Silva et al. 

analyzed 119 AMD patients and 152 controls and did not find a significant difference24 in FH 

levels and Smailhodzic et al. analyzed 197 AMD patients and 150 controls and did not find 

a significant difference either19. Our study did not find an association between systemic 

FH levels and AMD status, either in the separate cohorts nor in the meta-analysis, which 

included 484 AMD patients and 394 controls. Overall, our findings suggest that systemic 

levels of FHR-4 (and not of FH) may be an important source of inflammation for AMD25. 
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The results of our genetic analysis suggest that the elevated FHR-4 levels found in AMD 

patients may be in part related to genetic variability. Four AMD-associated variants at 

the CFH/CFHR locus were found to be associated with FHR-4 levels independently of 

AMD status. The AMD-risk conferring allele for the variants rs10922109, rs187328863 

and rs61818925 showed increased FHR-4 levels. These SNPs locate in intron 15 of CFH, 

intron 12 of KCNT2 (upstream of CFH) and in an intergenic region (upstream of CFHR4) 

respectively. Contrary to what we expected, one of the variants, rs570618, associated with 

lower FHR-4 levels. However, this variant is in high linkage disequilibrium with rs1061170 

(p.Y402H) for which a damaging effect on FH function has been described26. To take into 

account the cumulative effect of these variants we carried out a haplotype analysis. 

Haplotypes H2 and H3 were protective for AMD and were associated with decreasing  

FHR-4 levels, independently of AMD status. 

In conclusion, the immunohistochemistry experiments on human retinas, systemic FHR-4 

measurements and genetic analyses presented in this study point towards a potential role 

of FHR-4 in AMD pathogenesis, through an increased activation of the complement system. 

As a consequence, inhibition of FHR-4 may represent a new therapeutic strategy for AMD.

Methods

Proteins and antibodies

Recombinant FHR-4 was made through the GenScript gene synthesis and protein 

expression service using their baculovirus-insect cell expression system, and was based 

on the published sequence for the FHR-4B variant of the CFHR4 gene (UniProt identifier 

Q92496-3): the protein was designed to include a N-terminal 6x His tag and TEV cleavage 

site (see Extended Fig. 1). Recombinant FHL-1 was expressed in HEK293 cells as described 

previously8. Commercially available purified complement proteins used include C3b (VWR 

International, Lutterworth, UK, catalogue no. 204860), FH (Sigma-Aldrich, catalogue no. 

C5813), and FI (VWR International, catalogue no. 341280). Commercially available antibody 

against collagen IV was used (catalogue no: 600-401-106S, 2B Scientific Ltd., Oxford, UK).

Generation of a FHR-4 monoclonal antibody 

Mice were immunised subcutaneously (sc) with recombinant FHR-4 (~30µg/mouse; 

supplied by SC) in complete Freund’s adjuvant; boosted 4 and 6 weeks later with FHR4 

(dose as above), in incomplete Freund’s adjuvant and test bled at 8 weeks. 

The titre of anti-FHR-4 antibody was assessed by screening sera from individual mice in a 

capture ELISA. 96-well microtiter plates were coated with recombinant FHR4 (0.2µg/well 
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in carbonate buffer pH9.6) for 1 hour at 37˚C, blocked in 1% BSA in PBS/tween, washed 

three times in PBS/tween and blotted dry. A doubling dilution of serum from each mouse 

(in duplicate; 1:100 - 1:256,000) was added to the wells and incubated for 1 hour at 37˚C. 

Wells were washed three times in PBS/tween, then HRP-labelled anti-mouse IgG (Jacksons) 

diluted 1:1000 in PBS/tween was added to each well and incubated for 1 hour at 37˚C. 

Wells were washed as above, blotted dry then OPD substrate added to each well. When 

colour had developed sufficiently, the reaction was stopped by adding an equal volume of 

10% H
2
SO

4
 to each well. Plates were read in an ELISA reader. Titre for a serum sample was 

the highest dilution giving an absorbance >2x background (non-immune serum at the same 

dilution). 

The mouse with the highest titre in the above assay was boosted intraperitoneally with 

FHR4 (30µg in PBS). The mouse was sacrificed 48 hours later and the spleen harvested 

aseptically.

Spleen cells were obtained by perfusion with RPMI in a sterile cabinet. Spleen cells were 

then fused with SP2 myeloma cells to generate hybridomas using a standard protocol. Cells 

were suspended in 100ml complete medium containing HAT (to select for hybridomas) and 

plated out, 100µl/well in 10 x 96-well flat-bottomed tissue culture plates that had been 

pre-conditioned by plating peritoneal macrophages 24 hours previously. Plates were 

placed in a 37˚C/5% CO
2
 incubator and left undisturbed for 14 days. 

Supernatant (50µl) was removed from each well and transferred to corresponding wells in 

a 96-well microtiter plate coated with FHR-4 as above; bound antibody was detected as 

above. Cells were harvested from wells that were positive in the screen, diluted to 10ml in 

complete medium containing HT, and re-cloned into macrophage-preconditioned 96-well 

plates.

After 10-14 days, wells containing visible clones were screened as above. Positive wells 

were simultaneously re-cloned and expanded to 24-well plates. 

Once stable clones had been obtained and expanded in sufficient scale, antibodies were 

purified either on protein G or by salt precipitation. Purified antibodies were tested in 

western blotting against recombinant FHR-4 and human serum. Non-competitive pairs of 

antibodies were identified for ELISA development. 

Human eye tissue

Post-mortem donor eyes were obtained from the Manchester Eye Bank at the Royal Eye 

Hospital (Manchester, UK), within 48 hours from the time of death, after removal of the 

corneas for transplantation; these were classified and curated as part of the Manchester 

Eye Tissue Repository (ETR). No organs/tissues were procured from prisoners. Our 

research adhered to the tenets of the Declaration of Helsinki and in all cases, there was 
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prior informed consent for the eye tissue to be used for research obtained and held by the 

Manchester Eye Bank, and guidelines established in the Human Tissue Act of 2004 (UK) 

were followed. Ethical approval for the use of tissue in these experiments was granted by 

the Manchester Eye Tissue Repository ethics committee (ref. 15/NW/0932).

Immunohistochemistry

Tissue sections (10 µm) were stained for the presence of endogenous FHR-4, collagen IV or 

C3/C3b as described previously8. Briefly, tissue sections were incubated with chilled (-20˚C)  

histological grade acetone (Sigma-Aldrich) and methanol (mixed 1:1) for 20 seconds before 

thorough washing with PBS. Tissue sections were blocked with 0.1% (w/v) BSA, 1% (v/v) 

goat serum, and 0.1% (v/v) Triton X-100 in PBS for 1 h at room temperature. After washing 

with PBS, tissue sections were incubated with Ab combinations of either 10 µg/ml of anti-

FHR-4 (clone 150: see above) mixed with 1 µg/ml Collagen IV rabbit polyclonal antibody, 

or anti-FHR-4 mixed with 1 µg/ml anti C3 rabbit polyclonal antibody (catalogue no: 21337-

1-AP, Proteintech Group, Inc, United States), for 16 h at 4°C. Sections were washed and 

biotinylated anti-mouse IgG (Catalogue No. BA_9200, Vector laboratories, Inc) diluted 

1:250 in PBS was applied for 1 hour to amplify the FHR-4 signal. Slides were subsequently 

washed and Alexa Fluor® 647 streptavidin (catalogue no: S32357, Invitrogen) diluted 

1:250 in PBS and Alexa Fluor® 488-conjugated goat anti-rabbit Ab (Invitrogen, USA) diluted 

1:500 in PBS were added for 2 h at room temperature. After washing DAPI was applied as 

a nuclear counterstain (at 0.3 mM for 5 min) prior to mounting with medium (Vectashield; 

H-1400, Vector Laboratories, Peterborough, UK) and application of a coverslip. 

In the case of blank control sections the exact same protocol was followed but PBS replaced 

the primary antibody. To test antibody specificity in immunohistochemistry pre-adsorption 

experiments were performed whereby 10-fold molar excess of pure recombinant FHR-4 

is premixed with the anti-FHR-4 Ab prior to application to the tissue sections. In all cases 

images were collected on a Zeiss Axioimager.D2 upright microscope using a 40x / 0.5 EC Plan-

neofluar and 100x / 0.5 EC Plan-neofluar objective and captured using a Coolsnap HQ2 camera 

(Photometrics) through Micromanager software v1.4.23. Specific band pass filter sets for 

DAPI, FITC and Cy5 were used to prevent bleed through from one channel to the next. Images 

were then processed and analysed using Fiji ImageJ (http://imagej.net/Fiji/Downloads). 

To prevent bleed-through of color from one channel to the next, specific band pass filter 

sets were used for DAPI, FITC, and Cy-5. All images were handled using ImageJ64 (version 

1.40g; http://rsb.info.nih.gov/ij). 

Surface plasmon resonance

The binding of FHR-4 to immobilised C3b was measured by surface plasmon resonance 

(SPR) using a Biacore 3000 (GE Healthcare). The sensor surfaces were prepared by 



150 chapter 3

immobilizing human C3b onto the flow cells of a Biacore series S carboxymethylated 

dextran (CM5) sensor chip (GE Healthcare) using standard amine coupling and included 

blank flow cells were no C3b protein was present. Experiments were performed at 25°C and 

a flow rate of 15 µl/min in PBS with 0.05% surfactant P20. FHR-4 was injected in triplicate 

at concentration ranging from 1 to 100µg/ml. Samples were injected for 150 seconds and 

dissociated for another 200 seconds and the chip was regenerated between injections 

with 1M NaCl for 1 min before chip is re-equilibrated into PBS with 0.05% surfactant P20 

prior to the next injection. After subtraction of each response value from the blank cell, 

association and dissociation rate constants were determined by global data analysis. All 

curves were fitted using a 1:1 Langmuir association/dissociation model (BIAevaluation 

4.1; GE Healthcare).

Solid phase binding assays

Purified C3b was adsorbed onto the wells of microtiter plates (Nunc Maxisorb, Kastrup, 

Denmark) at 1µg/well in 100µl/well PBS for 16 h at room temperature. Plates were blocked 

for 90 minutes at 37°C with 300µl/well 1% (w/v) BSA in assay buffer (20mM HEPES, 

130mM NaCl, 0.05% (v/v) Tween-20, pH 7.3). This standard assay buffer (SAB) was used 

for all subsequent incubations, dilutions and washes and all steps were performed at room 

temperature. A constant concentration of 100nM is made for either FH or FHL-1 in SAB and 

increasing concentrations of FHR-4 are used as a competitor, up to 500nM. FH/FHR-4 and 

FHL-1/FHR-4 mixes are incubated with the immobilized C3b for 4 hours. After washing, 

bound FH or FHL-1 protein was detected by the addition of 100µl/well of 0.5µg/ml OX23 

antibody and incubated for 30 minutes followed by washing and a 30 minute incubation 

in 100µl of a 1:1000 dilution of AP-conjugated anti- mouse IgG (Sigma-Aldrich). Plates 

were developed using 100µl/well of a 1mg/ml disodium p-nitrophenylphosphate solution 

(Sigma-Aldrich) in 0.05 M Tris-HCl, 0.1 M NaCl, pH 9.3. The absorbance values at 405 nm 

were determined after 10 minutes of development at room temperature and corrected 

against blank wells (i.e., those with no immobilized C3b). 

Fluid phase C3b breakdown assays

The fluid phase cofactor activity of FHL-1 was measured by incubating purified FHL-1, C3b 

and FI together in a total volume of 20µl PBS for 15 minutes at 37°C. For each reaction 2µg 

C3b and 0.04µg FI were used with varying concentrations of FHL-1 ranging from 0.015µg to 

1µg per reaction. The assay was stopped with the addition of 5µl 5x SDS reducing sample 

buffer and boiling for 10 minutes at 100°C. Samples were run on a 4-12% NuPAGE Bis 

Tris gel at 200V for 60 minutes in order to maximise the separation of the C3b breakdown 

product bands (see Extended data Fig. 4). Molecular weight markers used were Novex 

Sharp pre-stained protein standards (3.5-260kDa, Cat. No. LC5800, Life Technologies, 

Paisley, UK). The density of the 68kDa iC3b product band was measured using ImageJ64 

(version 1.40g; rsb.info.nih.gov/ij) and used to track C3b breakdown efficiency of the FHL-1  
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proteins. For FHR-4 inhibition assays, the amount of FHL-1 used in the reaction is fixed 

at 1µg and increasing amounts of FHR-4 are added to create up to a 5-fold molar excess 

of FHR-4 over FHL-1. Otherwise the reactions are performed under the same condition as 

previously. In all cases averaged data from three separate experiments were used. 

Ussing chamber diffusion experiments

The macular region of enriched Bruch’s membrane isolated from donor eyes was mounted 

in an Ussing chamber (Harvard Apparatus, Hamden, CT). Once mounted, the 5-mm-diameter 

macular area was the only barrier between two identical compartments (see Extended Fig. 3a). 

Both sides of Bruch’s membrane were washed with 2 ml PBS for 5 min at room temperature. 

Fresh PBS was used in both the sample and diffusate chambers. To the sample chamber pure 

recombinant FHR-4, with a final concentration of 100µg/ml is added and the Ussing chamber 

was left at room temperature for 24 hours with gentle stirring in each compartment with 

magnetic stirrer bars to avoid generating gradients of diffusing protein. Samples from each 

chamber were analyzed on 4-12% NuPAGE Bis-Tris gels, run at 200V for 60 minutes. Either 

20µl samples straight from each chamber were missed with 5µl 5x SDS loading buffer and run 

or 100µl samples were taken and concentrated using StrataClean beads (Agilent Technologies, 

Cheadle, U.K) by mixing the beads with each 100µl sample for 5 minutes at room temperature 

before centrifugation and removal of the supernatant. Beads were then re-suspended in 20µl 

neat 5x SDS loading buffer and loaded directly to the gel. Gels were stained with Instant Blue 

stain (Expedeon, Harston, UK) for 60 min at room temperature, before washing and storage in 

MiliQ water. Molecular weight markers used were Blue Prestained Protein Standards, Broad 

Range (11-190kDa, New England BioLabs, Hitchin, UK, catalogue no. P7706S). Diffusion 

experiments were performed on three separate donor BrM.

FHR-4 measurements 

The levels of FHR-4 were measured using an optimised in-house sandwich ELISA. Nunc-

Immuno™ MaxiSorp™ 96-well plates were coated with 50µl/well of monoclonal anti-FHR4 

antibody 4E9 at 5µg/ml (in 0.1M carbonate buffer pH9.6). After incubating for 1 hour at 

37°C, the plates were blocked with 2% BSA in PBS + 0.1%Tween-20 (PBST) for 1 hour at 

room temperature. After 3 washes of PBST, 50µl/well of purified FHR-4 protein diluted in 

0.1% PBST was added in duplicate starting at 1µg/ml and serially diluted (1 in 2) down the 

plate. Test samples were added (50µl/well) in duplicate at a 1:40 dilution to the remaining 

wells, and plates were incubated at 37°C for 1.5 hours. After 3 washes in PBST, 50µl/well of 

1µg/ml of HRP-labelled anti-FHR-4 monoclonal antibody clone 17 was added and the plates 

were incubated for 1 hour at room temperature. After washing 3 times with PBST, 50µl/well 

of orthophenylenediamine (SIGMAFAST™ OPD, Sigma-Aldrich, UK) was added to develop 

the plates and the reaction was stopped after 5 minutes by adding an equal volume of 

10% sulphuric acid. Absorbance was measured in a plate reader at 492 nm and protein 

concentrations were interpolated from standard curves plotted using GraphPadPrism5. 
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Cambridge and EUGENDA study samples

The Cambridge AMD study is a case-control study of AMD with participants recruited 

from ophthalmic clinics in London, the southeast of England, and the northwest of 

England between 2001 and 200727. All patients had at least 1 eye affected by choroidal 

neovascularization (CNV) and/or geographic atrophy (GA). Patients were excluded if they 

had greater than 6 diopters of myopic refractive error or evidence of other inflammatory 

or retinovascular disease (such as retinal vessel occlusion, diabetic retinopathy, or 

chorioretinitis) that could contribute to the development of or confound the diagnosis of 

maculopathy. Almost all of the controls were spouses or partners of index patients, and 

the remainder were friends of patients. All participants described their race/ethnicity as 

white rather than other on a recruitment questionnaire. Participants were examined by an 

ophthalmologist and underwent color stereoscopic fundus photography of the macular 

region. Images were graded at the Reading Centre, Moorfields Eye Hospital, London, using 

the International Classification of Age-related Maculopathy and Macular Degeneration28. 

Blood samples were obtained at the time of interview; EDTA samples were obtained for 

DNA extraction, and lithium-heparin plasma samples stored at –80°C were later used for 

FHR-4/FH measurements. 

The European Genetic Database (EUGENDA) is a database for the clinical and molecular 

analysis of AMD. Patients from the EUGENDA cohort were recruited at the Department of 

Ophthalmology of the Radboud university medical center, Nijmegen, the Netherlands, and 

the University of Cologne, Germany. All the individuals were graded by classification of 

retinal images according to the standard protocol of the Cologne Image Reading Center 

by certified graders.29 Only patients graded as late AMD were included in the study. Serum 

samples were obtained by a standard coagulation/centrifugation protocol, and within 1 

hour after collection the samples were stored at –80°C. 

For both studies ethical approval was obtained from either national or local ethics 

committees and adhered to the tenets of the Declaration of Helsinki. All participants 

provided written informed consent to undergo the clinical examination and epidemiological 

data collection, and to provide a blood sample for biochemical and genetic analyses.

Genotype data

All Cambridge and EUGENDA individuals included in this study had been previously 

analyzed within a large GWAS of AMD carried out by the International AMD Genomics 

Consortium (IAMDGC) on 43,566 subjects (of which, 16,144 patients with advanced AMD 

and 17,832 control subjects of European ancestry)3. All DNA samples were genotyped with 

a custom-modified Illumina HumanCoreExome array at the Center for Inherited Disease 

Research (CIDR) and quality control and genotype imputation using the 1000 Genomes 

Project30 reference panel were performed by the IAMDGC as described previously3. A total 
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of 12,023,830 directly genotyped (439,350) or imputed (11,584,480) quality-controlled 

variants were available for single-variant genetic association analyses. Phased genotype 

data as inferred within the IAMDGC study3 were also available for haplotype-based 

association analyses.

Association analyses of FHR-4/FH levels, SNPs, haplotypes and 

AMD

Stata software, version 13.1 (StataCorp), and ipdmetan and mvmeta commands were used 

for conducting 2-stage, fixed-effects meta-analyses of the available individual participant 

data from the 2 cohorts (Cambridge and EUGENDA). Heterogeneity across studies was 

assessed using the I2 statistic. FHR-4 and FH levels were natural logarithmically transformed 

to ensure normality of the distribution. We assessed the association of late AMD status 

with FHR-4 and FH levels via Wald tests using linear regression models adjusted for age 

and sex. We also assessed the association of the 8 independently associated SNPs at the 

CFH/CFHR locus reported by the IAMDGC study3 (rs10922109, rs570618, rs121913059, 

rs148553336, rs187328863, rs61818925, rs35292876, rs191281603) with FHR-4 and FH 

levels via Wald tests on the SNP genotypes coded as 0, 1 and 2 according to the number 

of minor alleles using linear regression models adjusted for late AMD status. Finally, 

we extracted data for the haplotypes formed by those independently associated SNPs 

using the phased genotype data produced within the IAMDGC study3 and assessed the 

association of the observed haplotypes with AMD using logistic regression models and 

with FHR-4 and FH levels using linear regression models adjusted for late AMD status.

GWAS meta-analysis of FHR-4/FH levels

We carried out GWASs of (natural logarithmically transformed) FHR-4 and FH levels in each 

cohort (Cambridge and EUGENDA) using linear regression models adjusted for age, sex 

and the first two ancestry principal components (as estimated within the IAMDGC study3). 

The GWASes were carried out using EPACTS software (http://genome.sph.umich.edu/

wiki/EPACTS) and Wald tests were performed on the SNP genotypes coded as 0, 1 and 2 

according to the number of minor alleles for the directly typed variants or allele dosages for 

the imputed variants. Genomic control correction31 was applied if lambda was greater than 

1. Effect size estimates and standard errors of single variants seen in both cohorts were 

subsequently combined in a fixed-effect meta-analysis using METAL32. Manhattan and Q-Q 

plots were generated using the qqman R package (version 0.1.2) (https://cran.r-project.

org/web/packages/qqman/index.html). Sensitivity analyses adjusting the GWASes 

additionally for late AMD status were performed in an analogous manner.
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Extended data

H H H H H H G S S E N LY F Q G S S G Q E V K P C D F P E I Q H G G LY Y K S L R R LY F PA A A G Q S Y S Y 
YCD Q N F V T P S G SY W DY I H C TQ D G WS P T V P C LRTC S KS D I E I E N G F I S E S S S I Y I L N K E 
I Q Y KC K P GYATA D G N S S G S I TC LQ N G W S A Q P I C I K F C D M P V F E N S R A K S N G M R F K L 
H D T L DY E C Y D G Y E I S YG N T TG S I VC G E D G W S H F P TC Y N S S E KC G P P P P I S N G D T T S 
F LL K V Y V P Q S RV E YQ C Q SY Y E LQ G S N Y V TC S N G E W S E P P R C I H P C I I T E E N M N K N N 
IQLKG KSDI K Y YAKTGDT I E FMCK LGY N A NTSVLSFQAVCR E G IVEYPRCE

   
extended data figure 1  Sequence of FHR-4 recombinant protein.

Recombinant FHR-4 gene synthesis was carried out by GenScript using their gene synthesis and 

protein expression service and is based on the published sequence for the FHR-4B variant of the 

CFHR4 gene (UniProt identifier Q92496-3). The original recombinant protein included an N-terminal 

6xHis tag (*) followed by, a linker region (**), and a TEV protease cleavage site (***). Removal of the 

N-terminal His tag results in two non-authentic N-terminal residues (****). 

extended data figure 2  Pre-absorption test of anti-FHR-4 antibody. 

To test the tissue staining specificity of the anti-FHR-4 monoclonal antibody (clone 150), the normal 

10µg/ml Ab mix used throughout the study (a) is pre-incubated with pure recombinant FHR-4 

at a final concentration of 100µg/ml (i.e. 10-fold excess) (b). Staining from the pre-absorption 

experiments are strikingly similar to the blank controls (c), where no primary antibody is included.

* ** *** ****
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extended data figure 3  FHR-4 does not diffuse freely across Bruch’s membrane. 

a) Enriched Bruch’s membrane from donor eyes are placed inside a modified Ussing chamber where: 

a, is the enriched Bruch’s membrane; b, are the sampling access points; and c, are magnetic stirrer 

bars to maintain flow around each chamber. b) samples from either the sample chamber or diffusate 

chamber are run on a 4-12% NuPage gel Bis-Tris gel and compared to a pure protein control (FHR-4). 

The gel shows 20µl samples taken and run directly from each chamber, as well as 100µl samples 

that have been concentrated prior to running on the gel. Gel is representative of three independent 

experiments. 

extended data figure 4  FHL-1 mediated C3b breakdown assay. 

The ability of FI to cleave C3b in the fluid phase in the presence of a co-factor (FHL-1) is shown. Pure 

C3b (2µg), FI (0.04µg), and FHL-1 (0.5µg) control bands are shown. FI cannot cleave the α-chain of 

C3b without a co-factor (lane ‘0’), but with increasing concentration of FHL-1 the breakdown of the 

C3b α-chain into iC3b (seen as two bands at 68kDa and 43kDa) is observed. Gel is representative of 

three independent experiments. 

A B
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extended data figure 5  Q-Q plot of the GWASes on log-FHR-4 levels.

Shown as black dots are the observed P-values (-log
10

(P)) compared to those expected under the null 

hypothesis.

A) GWAS without adjustment for AMD status. In the meta-analysis, adjustment for the inflation factor 

of the different cohorts was conducted (EUGENDA λ=1.004, Cambridge λ=1.003). B) GWAS adjusted 

for AMD status. In the meta-analysis, adjustment for the inflation factor of the different cohorts was 

conducted (EUGENDA λ=1.005, Cambridge λ=1.005). 
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At present, only advanced neovascular age-related macular degeneration (nvAMD) can be 

treated, by targeting vascular endothelial growth factor (VEGF). For geographic atrophy 

(GA), although several therapies are actively being developed, no established treatment is 

available to date. Also, progression of the disease cannot be halted, but it can be slowed 

down with the use of nutritional supplements. 

Due to the heterogeneity in the AMD patient population, it is plausible that the effect of 

therapeutic interventions depends on the biological drivers of disease in each individual 

patient. In essence, the patient’s genetic blueprint, in addition to demographic and 

lifestyle factors, is likely to influence how a patient responds to treatment. Consequently, 

the identification of biomarkers that can predict response to therapy in AMD could be used 

to improve AMD patient care, by tailoring medication to each patient’s individual needs. 

In this thesis, we have investigated what the influence of genetic biomarkers on treatment 

response to therapy in AMD is in chapters 2.1, 2.2 and 2.3. In chapter 3.1 we investigated 

the genetic drivers of complement activation, which is relevant in the context of novel 

treatment modalities for AMD. Finally, in chapter 3.2 we further explored the role of 

factor H related 4 (FHR-4) on AMD, as a potential new biomarker and target for therapy. 

In the Discussion, we will place these results in context and aim to provide an overview 

of the current literature investigating the association of biomarkers with response to 

supplements and anti-VEGF therapy. Moreover, we describe new therapeutic approaches 

undergoing clinical trials, and the potential use of biomarkers for patient selection for such 

new therapeutic approaches. 

1  Molecular biomarkers for current therapeutic 

interventions for AMD 

1.1 Dietary supplements for slowing disease progression

AMD-associated variants have been found to influence AMD progression and, for several 

years, there have been investigations into whether specific genotypes interact with the 

Age-Related Eye Disease Study (AREDS) supplementation affecting progression rates.1 

These studies sparked an intense debate in the field as different research groups arrived 

at different conclusions. In 2008 Klein, Seddon et al., suggested that response to AREDS 

supplements could be related to the CFH rs1061170 genotype.2 The study evaluated 876 

AREDS patients and found that for carriers of the CC genotype, dietary supplementation 

would have a smaller effect, possibly related to zinc consumption, but would still be 

beneficial. No interaction was found for the ARMS2 rs10490924 SNP. In 2013, a second 

study that included 995 AREDS participants was published by Awh et al., also proposing 

a genotypic interaction,3 and suggesting that improved outcomes could be obtained 
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after genotype selection. The authors described a deleterious interaction between CFH 

risk alleles (rs412852 and rs3766405) and supplementation with zinc, in which carriers 

of CFH risk alleles would progress to advanced AMD faster when taking zinc. Also, the 

authors claimed that individuals homozygous for the CFH and ARMS2 risk alleles would 

not benefit from the AREDS formula. After these results, the AREDS Research Group 

attempted replication in a larger AREDS cohort of 1,237 AMD patients, but did not 

identify any interaction, and concluded that reduction in the risk of AMD progression after 

supplementation was seen in all genotype groups.4 This study was followed by a series of 

contradictory results,5-7 and intense argumentation.8-10 However, the controversy seems to 

have been resolved: In a recent report, independent statistical research groups analyzed 

the data from the AREDS Research Group as well as from Awh and colleagues. Errors in 

the Awh et al., 2013 study were noted, and no interaction was reported between the CFH 

and ARMS2 SNPs and treatment response after correction for multiple testing. Therefore, 

it was concluded that AMD patients should be offered dietary supplementation regardless 

of genotype.11

1.2  Anti-VEGF antibodies for choroidal neovascularization 

treatment

Since the first publication in 2007,12 a vast number of studies have investigated 

associations of genetic variants with anti-VEGF treatment outcome in nvAMD. We reviewed 

the pharmacogenetic studies published to date, and provide a detailed overview of their 

study designs and conclusions in Table 1. Despite the large body of literature on this topic, 

with over 50 studies published, solid conclusions cannot be drawn. This is due to conflicting 

results and a high heterogeneity in study designs, which makes comparisons between 

studies challenging. Studies may involve ranibizumab treatment, bevacizumab treatment 

or both. Moreover, the definition of treatment response is highly variable: change in visual 

acuity, change in total retinal thickness, choroidal neovascularization (CNV) recurrence or 

number of injections are some of the variables used to measure treatment outcome. These 

variables are analyzed in a continuous or in a categorical manner, in which responders are 

compared to non-responders based on an arbitrary definition of response. Additionally, 

the studies evaluate response after the loading dose of 3 monthly injections or longer, and 

may therefore involve different treatment protocols. Also, correction for multiple testing 

is not applied in all studies, and the majority of studies do not provide a statistical power 

calculation.
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At the onset of the field of pharmacogenetics in AMD, a natural target to explore was the 

main genetic variant associated with AMD: SNP rs1061170 in the CFH gene. Indeed, most 

of the studies have investigated this single nucleotide polymorphism (SNP), however 

conflicting results have been reported. Several studies have reported an association of 

this genetic variant with response to anti-VEGF treatment;12-25 in all instances the AMD-

risk-conferring allele (C) led to a worse outcome after therapy. However, others have 

not identified any association.26-40 Three different meta-analyses have been carried out, 

all showing an association of rs1061170 with treatment response with a moderate level 

of significance.41-43 The most recent and comprehensive study included a total of 2,963 

individuals from 14 different studies and showed that patients homozygous for the 

AMD low risk allele (T) were more likely to have a better outcome compared to patients 

homozygous for the AMD high risk allele (C; OR=1.932, CI=1.125-3.173, P=0.017).43 In the 

genome-wide association (GWAS) study we performed in chapter 2.3, this SNP was close 

to be nominally associated with visual acuity outcome after 3 months (n=678, P=0.059) 

and showed the same direction of the effect previously reported (the T allele led to a better 

outcome). Notably, the two studies based on the Comparison of AMD Treatments Trials 

(CATT) and the Inhibition of VEGF in Age-related choroidal Neovascularisation (IVAN) clinical 

trials did not find any association for this variant, nor for any other variant investigated, 

despite their relatively large sample sizes (n=834 and n=509, respectively).33,34

The SNPs in ARMS2/HTRA1 (rs10490924 and rs11200638, which are in high linkage 

disequilibrium),44 have also been widely evaluated for association with treatment outcome. 

A similar scenario emerged for these SNP’s, where several studies reported an association 

in which the AMD-risk allele leads to worse response,21,26,29,31,32,37,39,45 while others did not 

report an association.12,14,21,22,24,27,30,33-35,40,46-49 Only one study, by Kang and colleagues, 

described better response for carriers of the AMD-risk allele in rs10490924, as they 

needed fewer bevacizumab injections after the loading dose.19 A meta-analysis including 

2,389 cases from 12 studies showed that patients homozygous for the AMD low risk 

allele in ARMS2 rs10490924 (GG) have a higher chance of responding better to treatment 

compared to patients heterozygous (TG) or homozygous (TT) for the AMD high risk allele 

(OR=1.34, CI=1.01-1.77, P=0.039), although no significant difference was found on the 

allele level. Also, no differences were found when the analysis was limited to patients 

of European descent.50 Another meta-analysis of 1,570 cases from 5 studies showed no 

association for the SNP rs11200638.51 In the GWAS study described in chapter 2.3, this 

SNP was not associated with visual acuity outcome after 3 months (n=678, P=0.416). 

Most study designs evaluated treatment outcome after 3 - 12 months of treatment, but a 

recent study evaluated the effect of genetic variants after 4 years of anti-VEGF treatment. 

This study by Valverde-Megías et al. examined the rs1061170 CFH and rs10490924 ARMS2 

SNPs and reported that patients homozygous for the AMD-risk allele of the ARMS2 SNP 

required more injections over this long-term follow-up period.39

Due to the nature of anti-VEGF therapy, the VEGFA gene and the KDR gene, encoding the main 

receptor for VEGF, were also considered candidates to be involved in anti-VEGF treatment 

response. Most of the SNPs investigated in these genes have recently been evaluated in a 
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meta-analysis. After evaluation of nine SNPs (rs699947, rs699946, rs833069, rs833061, 

rs2146323, rs1413711, rs2010963 and rs1570360 in VEGFA, and rs2071559 in KDR), anti-

VEGF treatment was found to be more effective in patients homozygous for the VEGFA 

rs833061 minor allele C, compared to the remaining AMD patients (OR=2.362, 95% CI 

1.41-3.95, P=0.001). This analysis was, however, limited in sample size including only 444 

AMD patients from three independent studies.52 Besides SNP rs2070296 in the neuropilin-1 

(NRP1) gene, described in chapter 2.1 of this thesis,53 other reported associations with 

treatment response include the APOE ε4 allele,54,55 IL8 rs4073,21,35,56 and PEDF rs1136287;14 

those have been analyzed in only a limited number of studies and warrant replication 

analyses. In the GWAS described in chapter 2.3, only rs429358 in the APOE gene showed a 

nominal association with visual acuity treatment response (P=0.043), in which the C allele 

leads to better outcome after treatment. The other variants previously associated with 

treatment response were not replicated in our GWAS (n=678). 

Three GWASes for anti-VEGF treatment response have been published to date.45,57,58 The first 

study, by Francis, involved only 65 AMD patients. When evaluating only candidate genes, an 

association with visual acuity outcome was reported for CFH rs1065489, and an association 

with change in macular thickness was reported for C3 rs2230205.57 In the second study, 

described in chapter 2.2 of this thesis, a total of 285 AMD patients were included in the GWAS 

discovery phase and, followed by replication in an independent cohort of 376 AMD patients. 

In this study SNP rs4910623 located in the olfactory receptor gene OR52B4 was described 

as a new variant associated with worse treatment outcome.58 In the third study, which was 

recently published, Yamashiro et al. analyzed 461 AMD patients collected in a prospective 

study design, and in a discovery and replication setting. The discovery GWAS phase with 

256 patients did not identify any genome-wide significant associations, and suggestive 

associations could not be replicated. In a candidate SNP analysis that included 9 variants, 

the G allele of ARMS2 rs10490924 was associated with additional treatment requirement 

after the loading dose.45 The GWAS study described in chapter 2.3 has a larger sample size 

compared to all the previous studies (n=678), and therefore more statistical power, however, 

it did not identify any genome-wide significant associations either for common variants. 

After replication and meta-analysis of the lead variants, rs12138564 located in the CCT3 

gene remained nominally associated with a better treatment outcome. This variants was nor 

analyzed in candidate studies nor reported in prior GWAS studies. This study analyzed for the 

first time the effect of rare genetic variants on treatment response showing a negative effect 

of rare protein-altering variants in C10ORF88 and UNC93B1 genes on treatment outcome.

In addition to the pharmacogenetic studies, other biomarkers have also been described 

to be associated with anti-VEGF treatment response in nvAMD. In aqueous humor, VEGF 

and interleukin-6 (IL-6) levels have been measured prior to treatment, and they seem to be 

indicative of the outcome.59 Lai and colleagues reported that baseline aqueous VEGF levels 

associated with persistent angiographic leakage after 3 months of bevacizumab therapy.59 

In another study by Chalam and colleagues, correlations of VEGF and IL-6 levels with 

change in central subfield macular thickness after 3 monthly injections of bevacizumab 

treatment were described, with the correlation of IL-6 levels being the strongest.60
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Studies in plasma and serum have also suggested potential systemic biomarkers. 

Kepez Yildiz et al. described higher levels of plasma IL-6 in good responders compared 

to non-responders.61 Nassar and colleagues evaluated 16 inflammatory cytokines and 

found that high IL-17 and TNF-α serum levels were associated with favorable response 

to anti-VEGF therapy.62 Lechner et al. described that plasma C3a levels were elevated in 

partial responders compared to complete responders; no differences were found for 

C4a and C5a levels.63 Additionally, Kubicka-Trzaska and colleagues analyzed serum anti-

retinal antibiodies and reported that a decrease in anti-retinal antibiodies levels after 

bevacizumab treatment correlated with functional and anatomical response.64

2  Molecular biomarkers for therapies in clinical 

trials 

2.1 Complement inhibiting therapies

Complement inhibiting therapies will presumably be most effective in AMD patients in 

which the complement system is most over-activated. Several studies have evaluated 

levels of complement components and activation fragments, which may represent useful 

biomarkers for treatment response to complement inhibiting therapies in AMD. Systemic 

levels of complement activation fragments such as Ba, Bb, C3a, C3d, C5a as well as levels 

of complement components Factor B (FB) and complement factor D (FD) seem to be 

elevated in AMD patients compared to controls.65-71 This is also the case for the C3d/C3 

ratio, which is analyzed in chapter 3.1. Systemic levels of complement component C3 and 

complement factor I (FI) levels appear, however, not different between AMD patients and 

controls.66,67,69,71-73 Factor H (FH) levels have been reported to be lower in AMD in some 

studies,74,75 but others do not report a difference.66,67,71,72,76 Specific complement component 

levels could therefore be used to identify AMD patients with high levels of complement 

activity. Nevertheless, a high variability in these systemic complement markers is found 

within the AMD and control groups, and the levels show a large overlap between cases 

and controls. Consequently, other markers may be needed as well to predict response. In a 

recent study including 31 nvAMD patients and 30 controls, differences in Ba and C3a levels 

in aqueous humor were detected, whereas in plasma these differences were not detected, 

probably due to the limited sample size. These results suggest that the difference in 

complement activation levels between patients and controls is larger locally in the eye than 

it is when measured systemically.77

Genetic variants located in or near the CFH, CFI, C9, C2/CFB, C3 and VNT genes, encoding 

components of the complement system, are known to be associated with AMD.78 Some 

of these genetic variants have shown to affect complement activation levels, and could 

therefore also be used as robust biomarkers for complement system activity in AMD. 
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We reviewed the reported associations between common AMD-associated variants and 

systemic complement system levels in Table 2. SNPs rs12144939 and rs1410996 in the 

CFH gene have been associated with the C3d/C3 ratio, and rs800292 has been associated 

with Ba and C3d levels and the C3d/C3 ratio.69,79,80 Genetic variants in the C2 and CFB 

genes have also been analyzed, and an association with complement activation fragments 

has been found for rs4151667 (with C3d/C3, Ba and FB), rs641153 (with C3d/C3), and 

rs9332739 (with Ba).69,71,79,80 SNPs rs6795735 and rs2230199 in the C3 gene seem to 

influence complement system activation as well. SNP rs6795735 associated with the 

C3d/C3 ratio, and rs2230199 with levels of C3d, C5a, and the C3d/C3 ratio.67,69,79,80 The 

association of ARMS2 rs10490924 with complement activation is inconclusive. While one 

study reported the SNP to influence C5a levels,67 in another study it did not,69 and a third 

study did not find an association with the C3d/C3 ratio.79 

In chapter 3.1 we analyzed common variants distributed across the genome in a GWAS 

on complement activation. This allowed us to detect in a unbiased manner the location 

the strongest association signal in the genome and to analyze systematically the known 

AMD-associated variants. The previous associations described for CFH and CFB/C2 were 

confirmed in our GWAS of systemic complement activation and no additional associations 

were detected. The associations of rs2230199 in C3 and rs10490924 in ARMS2 were, 

however, not confirmed. In previous studies, selected AMD-associated SNPs were analyzed. 

We analyzed for the first time the whole-genome in relation to complement activation. The 

strongest signal was surprisingly located in an SNP which did not associate with AMD and 

the AMD-associated variant that showed the strongest effect in the GWAS was rs6685931 

located in the CFHR4 gene. As a follow-up of these results, in chapter 3.2 we analyzed the 

role of FHR-4 in AMD. In this study, we found that AMD-associated variants as rs570618, 

rs10922109, rs187328863 and rs61818925 located in or near the CFH and CFHR4 genes 

associated with FHR-4 levels. 

Recently, rare coding variants in the CFH, CFI, C3 and C9 genes have been described in AMD 

patients, and have also been shown to have an effect on systemic levels of complement 

components. Carriers of CFH Arg127His,81 Arg175Pro,82 and Cys192Phe83 variants showed 

reduced FH levels. In carriers of CFI Gly119Arg,84 Gly188Ala,73 and Ala240Gly variants,85 

reduced FI levels were observed. Carriers of the C9 variant Arg95Ter showed C9 levels below 

the detection level,86 and in carriers of Pro167Ser,87 C9 levels were elevated. Other rare 

variants did not show an effect on systemic levels individually, but a functional effect on 

complement activation has been described. The effect of these rare variants has been 

recently reviewed by Geerlings and colleagues.88 Rare coding variants, in particular those 

showing an effect on complement activation, may therefore also be useful to select patients 

for complement inhibiting treatments. 

Besides genetic biomarkers, other biomarkers that associate with AMD and complement 

activity could also be used to identify AMD patients with an over-activated complement 

system. Other reported factors include low systemic triglyceride levels and high body mass 

index.79
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table 2  AMD-SNPs associated with systemic levels of complement components

SNP = Single nucleotide polymorphism, NE = Not specified, NA = Not associated

Gene SNP Study Allele / 
Genotype 
tested

Complement measure-
ment(s)

Direction 
of the 
effect

P-value

CFH rs12144939 Ristau et al., 2014 T C3d/C3 - 4.6x10-6

rs1410996 Ristau et al., 2014 T C3d/C3 - 10-4

Reynolds et al., 2009 TT, CT and TT Bb, C3a, C5a, FH NA

rs800292 Hecker et al., 2010 G Ba + 7.1x10-6

Hecker et al., 2010 G C3d + 0.0013

Ristau et al., 2014 A C3d/C3 - 0.003

Paun et al., 2016 A C3d/C3 - 0.002

Hecker et al., 2010 G FB, FD, FH/FHR-1 NA

rs570618 Chapter 3.2 G FHR-4 - 2.5x10-14

rs10922109 Chapter 3.2 A FHR-4 - 6.5x10-52

KCNT2 
(upstream 
of CFH)

rs187328863 Chapter 3.2 T FHR-4 + 2.7x10-5

CFHR4 rs61818925 Chapter 3.2 T FHR-4 - 8.2x10-18

rs6685931 Lorés-Motta et al., in press C C3d/C3 6.32x10-8

CFB rs4151667 Hecker et al., 2010 T Ba + 3.9x10-6

Ristau et al., 2014 A C3d/C3 - 1.0x10-5

Paun et al., 2016 A C3d/C3 - 4.1x10-6

Hecker et al., 2010 T FB, FD, FH/FHR-1, C5a, 
C3d

NA 

Smailhodzic et al., 2012 TA FB - <0.001

rs641153 Paun et al., 2016 A C3d/C3 - 0.048

Reynolds et al., 2009 CT/TT Bb, C3a, C5a, FH NA 

C2 rs9332739 Hecker et al., 2010 G Ba + 2x10-6

Hecker et al., 2010 G FB, FD, FH/FHR-1, C5a, 
C3d

NA

Reynolds et al., 2009 CG/CC Bb, C3a, C5a, FH NA

C3 rs6795735 Ristau et al., 2014 A C3d/C3 + 0.04

rs2230199 Reynolds et al., 2009 CG/GG C5a + 0.04

Ristau et al., 2014 G C3d/C3 + 0.04

Paun et al., 2016 G C3d/C3 + 0.035

Hecker et al., 2010 C C3d + 0.039

Hecker et al., 2010 C FB, FD, FH/FHR-1, C5a, Ba NA

Reynolds et al., 2009 CG/GG Bb, C3a, FH NA 

ARMS2 rs10490924 Reynolds et al., 2009 GT/TT C5a + 0.02

Reynolds et al., 2009 GT/TT Bb, C3a, FH NA 

Hecker et al., 2010 NE FB, FD, FH/FHR-1, C5a, 
Ba, C3d

NA 
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2.2 New therapeutic approaches: Gene and cell based therapies

The high and increasing prevalence of AMD together with the limited therapeutic options 

have boosted research to develop new therapies.89 These new therapeutic strategies make 

use of recent technological advances including gene therapy, stem cells and genome 

editing.

2.2.1 Gene therapy

Gene therapy introduces specific genetic material into the patient’s cells, usually by means 

of a viral vector. The successful example of gene replacement therapy for the treatment of 

a monogenic retinal disease, Leber congenital amaurosis,90 motivated the development of 

gene therapy clinical trials for AMD. In AMD, the focus is on promoting the expression of 

a therapeutic protein in retinal pigment epithelium (RPE) cells. Viral vectors are delivered 

intravitreally or subretinally. An overview of gene therapy clinical trials for AMD is presented 

in Table 3. 

AAVCAGsCD59 is the only gene therapy trial targeting the complement system which is 

currently being tested for GA, and inhibits membrane attack complex (MAC) formation 

through CD59 expression. Other gene therapy trials target the neovascular form of AMD. 

AdGVPEDF.11D leads to expression of pigment epithelium-derived factor (PEDF), an anti-

angiogenic protein that counteracts the effects of VEGF in the choroidal neovascularization 

process.91 This therapy has not been further evaluated since the results of the phase I 

trial in 2006.92 AAV2-sFLT01 and rAAV.sFLT-1 both express soluble vascular endothelial 

growth factor receptor 1 (sFLT-1), an antagonist for VEGF.93 The results of the phase I trial 

of AAV2-sFLT01 have recently been published with positive safety data and toleration of 

the drug after 3 years.94 rAAV.sFLT-1 has already been evaluated in phase IIa, however, 

the control and the treatment groups performed worse than ranibizumab alone.95  

OXB-201, also known as RetinoStat, leads to the expression of the anti-angiogenic 

proteolytic products angiostatin and endostatin.96,97 Phase I has already been completed 

and no adverse events were observed,98 therefore, long term-safety studies are on-going. 

Finally, RGX-314 encodes a soluble anti-VEGF protein and is currently being evaluated in 

phase I clinical trials.

Anti-angiogenic factors delivered using gene therapy might also show a variability in 

response, as has been described for the currently used anti-VEGF antibodies. Therefore, 

pharmacogenetic associations found for anti-VEGF therapy might also be useful to analyze 

in clinical trials of gene therapy for nvAMD.

In addition, research on gene therapy for supplementation of FH is currently ongoing,99 and 

supplementation therapy for FI might be useful as carriers of rare variants show reduced 

FI levels. For this particular therapy, patient selection based on genotype will be required. 

Carriers of rare variants in CFH and CFI known to have strong effects on the protein function 

or levels would be the best candidates for inclusion in clinical trials. 



178 chapter 4

ta
b

le
 3

  G
e

n
e

-t
h

e
ra

p
y 

a
n

d
 s

te
m

-c
e

ll
 b

a
se

d
 t

h
e

ra
p

ie
s 

fo
r 

A
M

D
 in

 c
li

n
ic

a
l t

ri
a

ls

Ge
ne

 th
er

ap
y

 
 

 
 

 

Dr
ug

Ge
ne

 e
x-

pr
es

se
d

Ta
rg

et
Cl

in
ic

al
 p

ha
se

Re
su

lts
Re

fe
re

nc
e

Cl
in

ic
al

tr
ia

ls
.g

ov
 

id
en

tifi
er

Fu
nd

in
g 

 
(c

lin
ic

al
tr

ia
ls

.g
ov

)
Ad

GV
PE

DF
.1

1D
PE

DF
NV

 A
M

D
Ph

as
e 

I
Co

m
pl

et
ed

: N
o 

se
rio

us
 a

dv
er

se
 

ev
en

ts
 a

nd
 n

o 
do

se
-li

m
iti

ng
 

to
xi

ci
tie

s,
 tr

an
si

en
t i

nt
ra

oc
ul

ar
 

in
fla

m
m

at
io

n 
oc

cu
rr

ed
 in

 2
5%

 o
f 

pa
tie

nt
s

Ca
m

po
ch

ia
ro

 P
A 

et
 a

l.,
 

20
06

NC
T0

01
09

49
9

Ge
nV

ec

AA
V2

-s
FL

T0
1

sF
LT

10
1 

(d
om

ai
n 

2 
of

 
Fl

t-1
 li

nk
ed

 to
 

hu
m

an
 Ig

G1
-F

c)

NV
 A

M
D

Ph
as

e 
I

Co
m

pl
et

ed
: S

af
e 

an
d 

w
el

l t
ol

er
at

ed
 

at
 a

ll 
do

se
s,

 p
ot

en
tia

l e
ffe

ct
 o

f 
ba

se
lin

e 
an

ti-
AA

V2
 s

er
um

 a
nt

ib
od

-
ie

s 
an

d 
tr

an
sg

en
e 

ex
pr

es
si

on

He
ie

r J
S 

et
 a

l.,
 2

01
7

NC
T0

10
24

99
8

Ge
nz

ym
e,

 a
 S

an
ofi

 
Co

m
pa

ny

OX
B-

20
1 

(R
et

in
oS

ta
t)

An
gi

os
ta

tin
 a

nd
 

en
do

st
at

in
NV

 A
M

D
Ph

as
e 

I
Co

m
pl

et
ed

: W
el

l-t
ol

er
at

ed
 w

ith
 n

o 
do

se
-li

m
iti

ng
 to

xi
ci

tie
s,

 re
du

ct
io

n 
in

 le
ak

ag
e 

fo
r 7

1%
 o

f p
ar

tic
ip

an
ts

, 
re

du
ct

io
n 

in
 fl

ui
d 

in
 1

 p
at

ie
nt

Ca
m

po
ch

ia
ro

 P
A 

et
 a

l.,
 

20
07

NC
T0

13
01

44
3 

Ox
fo

rd
 B

io
M

ed
ic

a

Ph
as

e 
I 

O
ng

oi
ng

 (l
on

g 
te

rm
 s

af
et

y 
- 1

5 
ye

ar
s)

 
NC

T0
16

78
87

2
Ox

fo
rd

 B
io

M
ed

ic
a

RG
X-

31
4

sA
nt

i-V
EG

F 
pr

ot
ei

n
NV

 A
M

D
Ph

as
e 

I
O

n 
go

in
g

 
NC

T0
30

66
25

8
Re

ge
nx

bi
o 

In
c.

AA
VC

AG
sC

D5
9 

or
 H

M
R5

9 
CD

59
GA

 A
M

D
Ph

as
e 

I
O

n 
go

in
g

 
NC

T0
31

44
99

9
He

m
er

a 
Bi

os
ci

en
ce

s
rA

AV
. s

FL
T-

1
sF

LT
1

NV
 A

M
D

Ph
as

e 
I

Co
m

pl
et

ed
: S

af
e 

an
d 

w
el

l t
ol

er
at

ed
 

af
te

r 3
6 

m
on

th
s

Ra
ko

cz
y 

EP
 e

t a
l.,

 2
01

5;
 

Co
ns

ta
bl

e 
IJ 

et
 a

l.,
 2

01
7

NC
T0

14
94

80
5

Li
on

s 
Ey

e 
In

st
itu

te
, 

Pe
rt

h,
 W

es
te

rn
 

Au
st

ra
lia

Ph
as

e 
II 

Ph
as

e 
2a

 co
m

pl
et

ed
: S

m
al

le
r i

m
-

pr
ov

em
en

t t
ha

n 
ra

ni
bi

zu
m

ab
 a

lo
ne

Co
ns

ta
bl

e 
IJ 

et
 a

l.,
 2

01
6

NC
T0

14
94

80
5

Li
on

s 
Ey

e 
In

st
itu

te
, 

Pe
rt

h,
 W

es
te

rn
 

Au
st

ra
lia



general discussion 179

St
em

 c
el

l t
he

ra
py

 
 

 
 

 

Ty
pe

 o
f t

he
ra

py
Ta

rg
et

Cl
in

ic
al

 p
ha

se
Re

su
lts

Re
fe

re
nc

e
Cl

in
ic

al
tr

ia
ls

.g
ov

 
id

en
tifi

er
/ U

M
IN

_C
TR

 
id

en
tifi

er

Fu
nd

in
g 

 
(c

lin
ic

al
tr

ia
ls

.g
ov

)

Au
to

lo
go

us
 B

M
SC

GA
 A

M
D

Ph
as

e 
I/

II
Un

kn
ow

n 
(e

st
im

at
ed

 co
m

pl
e-

tio
n 

da
te

 2
01

5)
 

NC
T0

20
16

50
8

Al
-A

zh
ar

 U
ni

ve
rs

ity

Au
to

lo
go

us
 B

M
SC

NV
 &

 G
A 

AM
D

Ph
as

e 
I/

II
Co

m
pl

et
ed

 
NC

T0
15

18
12

7
Un

iv
er

si
ty

 o
f S

ao
 

Pa
ul

o
HC

NS
SC

GA
 A

M
D

Ph
as

e 
I/

II
Co

m
pl

et
ed

: L
on

g 
te

rm
 s

af
et

y 
as

se
ss

m
en

t t
er

m
in

at
ed

 
NC

T0
16

32
52

7
St

em
Ce

lls
, I

nc
.

hE
SC

-R
PE

GA
 A

M
D

Ph
as

e 
I/

II
Co

m
pl

et
ed

: S
af

e 
an

d 
po

ss
ib

le
 

ac
tiv

ity
 o

f t
he

 c
el

ls
Sc

hw
ar

tz
 S

D 
et

 a
l.,

 2
01

2;
 S

ch
w

ar
tz

 
SD

 e
t a

l.,
 2

01
5

NC
T0

13
44

99
3

As
te

lla
s 

In
st

itu
te

 
of

 R
eg

en
er

at
iv

e 
M

ed
ic

in
e

Hu
m

an
 u

m
bi

lic
al

 ti
ss

ue
-d

e-
riv

ed
 c

el
ls

 (P
al

uc
or

ce
l, 

CN
TO

-2
47

6)
 

GA
 A

M
D

Ph
as

e 
I/

IIa
Co

m
pl

et
ed

: S
ub

re
tin

al
 d

el
iv

er
y 

as
so

ci
at

ed
 w

ith
 p

er
fo

ra
tio

ns
 

an
d 

de
ta

ch
m

en
t, 

w
el

l t
ol

er
at

ed
, 

m
ay

 le
ad

 to
 V

A 
im

pr
ov

em
en

ts

Ho
 A

C 
et

 a
l.,

 2
01

7
NC

T0
12

26
62

8
Ja

ns
se

n 
Re

se
ar

ch
 &

 
De

ve
lo

pm
en

t, 
LL

C

Au
to

lo
go

us
 B

M
SC

GA
 A

M
D

Ph
as

e 
I

Co
m

pl
et

ed
: W

el
l t

ol
er

at
ed

Pa
rk

 S
S 

et
 a

l.,
 2

01
4

NC
T0

17
36

05
9

Un
iv

er
si

ty
 o

f C
al

ifo
r-

ni
a,

 D
av

is
hE

SC
-R

PE
 (O

pR
eg

en
)

GA
 A

M
D

Ph
as

e 
I/

II
O

n 
go

in
g

 
NC

T0
22

86
08

9
Ce

ll 
Cu

re
 N

eu
ro

sc
ie

nc
-

es
 L

dt
.

So
m

at
ic

 c
el

l n
uc

le
ar

 tr
an

sf
er

 
hE

SC
-R

PE
GA

 A
M

D
Ph

as
e 

I
O

n 
go

in
g

 
NC

T0
33

05
02

9
CH

A 
Un

iv
er

si
ty

 

hE
SC

-R
PE

GA
 A

M
D

Ea
rly

 p
ha

se
 I

O
n 

go
in

g
 N

CT
03

04
64

07
Ch

in
es

e 
Ac

ad
em

y 
of

 
Sc

ie
nc

es
hE

SC
-R

PE
GA

 A
M

D
Ea

rly
 p

ha
se

 I
O

n 
go

in
g

 N
CT

02
75

54
28

Ch
in

es
e 

Ac
ad

em
y 

of
 

Sc
ie

nc
es

hE
SC

-R
PE

 in
 s

us
pe

ns
io

n 
an

d 
se

ed
ed

 o
n 

a 
su

bs
tr

at
e

NV
 &

 G
A 

AM
D

Ph
as

e 
I/

II
O

n 
go

in
g

 
NC

T0
29

03
57

6
Fe

de
ra

l U
ni

ve
rs

ity
 o

f 
Sa

o 
Pa

ul
o

Au
to

lo
go

us
 B

M
SC

AM
D

No
t s

pe
ci

fie
d

O
n 

go
in

g
 

NC
T0

30
11

54
1

M
D 

St
em

 C
el

ls
 

Au
to

lo
go

us
 iP

SC
-R

PE
GA

 A
M

D
Pr

od
uc

tio
n 

of
 th

e 
ce

lls
 

O
n 

go
in

g
 

NC
T0

24
64

95
6

M
oo

rfi
el

ds
 E

ye
 H

os
-

pi
ta

l N
HS

 F
ou

nd
at

io
n 

Tr
us

t
hE

SC
-R

PE
 (P

f-0
52

06
38

8)
NV

 A
M

D
Ph

as
e 

I
O

ng
oi

ng
 (l

on
g 

te
rm

 s
af

et
y,

 
4-

ye
ar

 fo
llo

w
-u

p)
 

 
NC

T0
31

02
13

8
Pfi

ze
r



180 chapter 4

hE
SC

-R
PE

 o
n 

a 
pa

ry
le

ne
 

m
em

br
an

e 
(C

PC
B-

RP
E)

GA
 A

M
D

Ph
as

e 
I/

II
O

n 
go

in
g

 
NC

T0
25

90
69

2
Re

ge
ne

ra
tiv

e 
Pa

tc
h 

Te
ch

no
lo

gi
es

, L
LC

Au
to

lo
go

us
 B

M
SC

s
AM

D
No

t s
pe

ci
fie

d
O

n 
go

in
g

 
NC

T0
19

20
86

7
Re

tin
a 

As
so

ci
at

es
 o

f 
So

ut
h 

Fl
or

id
a

hE
SC

-R
PE

AM
D

Ph
as

e 
I

O
n 

go
in

g
 N

CT
02

74
97

34
So

ut
hw

es
t H

os
pi

ta
l, 

Ch
in

a
hE

SC
-R

PE
GA

 A
M

D 
Ph

as
e 

I/
II

O
ng

oi
ng

 (l
on

g 
te

rm
 s

af
et

y 
an

d 
to

le
ra

bi
lit

y)
 N

CT
02

46
33

44
As

te
lla

s 
In

st
itu

te
 

fo
r R

eg
en

er
at

iv
e 

M
ed

ic
in

e
So

m
at

ic
 c

el
l n

uc
le

ar
 tr

an
sf

er
 

hE
SC

-R
PE

GA
 A

M
D

Ph
as

e 
I/

IIa
O

ng
oi

ng
 (p

re
lim

in
ar

y 
re

su
lts

: 
sa

fe
 a

nd
 to

le
ra

te
d,

 2
 p

at
ie

nt
s 

in
cl

ud
ed

, o
ne

 p
at

ie
nt

 g
ai

ne
d 

VA
 

an
d 

th
e 

ot
he

r m
ai

nt
ai

ne
d 

VA
)

So
ng

 W
K 

et
 a

l.,
 2

01
5

NC
T0

16
74

82
9

CH
A 

Bi
ot

ec
h 

CO
., 

Lt
d

hE
SC

-R
PE

 (A
SP

73
17

)
GA

 A
M

D
Ph

as
e 

Ib
/I

I
No

t o
pe

n 
ye

t
 

NC
T0

31
78

14
9

As
te

lla
s 

In
st

itu
te

 
fo

r R
eg

en
er

at
iv

e 
M

ed
ic

in
e

hE
SC

-R
PE

GA
 A

M
D

Ph
as

e 
I/

II
No

t o
pe

n 
ye

t (
ev

al
ua

tio
n 

of
 lo

ng
 

te
rm

 s
af

et
y)

NC
T0

31
67

20
3 

As
te

lla
s 

In
st

itu
te

 
fo

r R
eg

en
er

at
iv

e 
M

ed
ic

in
e

Au
to

lo
go

us
 fi

br
ob

la
st

 
iP

SC
-R

PE
 s

he
et

NV
 A

M
D

Ph
as

e 
I/

II
Co

m
pl

et
ed

: P
at

ie
nt

 1
 a

fte
r 1

 
ye

ar
 th

e 
ce

ll 
sh

ee
t a

pp
ea

rs
 to

 
be

 s
af

e 
an

d 
re

m
ai

ns
 in

ta
ct

, V
A 

m
ai

nt
ai

ne
d.

 P
at

ie
nt

 2
 d

id
 n

ot
 

re
ce

iv
e 

th
er

ap
y 

du
e 

to
 co

nc
er

ns
 

ab
ou

t g
en

et
ic

 c
ha

ng
es

 in
 th

e 
iP

SC
s 

an
d 

iP
SC

-d
er

iv
ed

 R
PE

M
an

da
i M

 e
t a

l.,
 2

01
7

UM
IN

00
00

11
92

9
RI

KE
N

Al
lo

ge
ni

c H
LA

-m
at

ch
ed

 
iP

SC
-R

PE
NV

 A
M

D
Ph

as
e 

I
 O

n 
go

in
g

 
Un

kn
ow

n
RI

KE
N

N
V

 A
M

D
 =

 A
d

va
n

ce
d

 n
e

o
va

sc
u

la
r 

A
M

D
, G

A
 A

M
D

 =
 A

d
va

n
ce

d
 g

e
o

g
ra

p
h

ic
 a

tr
o

p
h

y 
A

M
D

, B
M

S
C

 =
 b

o
n

e
 m

a
rr

o
w

-d
e

ri
ve

d
 s

te
m

 c
e

ll
s,

 h
E

S
C

-R
P

E
 =

 H
u

m
a

n
  

e
m

b
ry

o
n

ic
 s

te
m

 c
e

ll
-d

e
ri

ve
d

 r
e

ti
n

a
l p

ig
m

e
n

te
d

 e
p

it
h

e
li

a
l c

e
ll

s,
 h

C
N

S
S

C
 =

 H
u

m
a

n
 c

e
n

tr
a

l n
e

rv
o

u
s 

sy
st

e
m

 s
te

m
 c

e
ll

s,
 iP

S
C

-R
P

E
 =

 in
d

u
ce

d
 p

lu
ri

p
o

te
n

t 
st

e
m

  

ce
ll

-d
e

ri
ve

d
 r

e
ti

n
a

l p
ig

m
e

n
te

d
 e

p
it

h
e

li
a

l c
e

ll
s,

 V
A

 =
 v

is
u

a
l a

cu
it

y



general discussion 181

2.2.2 Stem cell therapy

Another novel therapeutic approach with great potential for AMD is the use of stem cells, 

which are reprogrammed to the cell type of interest and transplanted to the patient. 

Transplantation of RPE cells derived from stem cells for AMD treatment is currently being 

evaluated in several clinical trials (Table 3). The first clinical trial started in 2011 and 

involved human embryonic stem cell (hESC) derived RPE cells (NCT01344993). The therapy 

was found to be safe with no tumorigenicity and showed potential effectiveness.100,101 

These results have been followed up with a new improved therapy (NCT03178149, 

NCT03167203) that is currently being evaluated by developers in the Astellas Institute for 

Regenerative Medicine. Other on-going clinical trials are also based on hESC derived RPE, 

however, their use requires immunosuppressive treatment, bearing risks,102 and raising 

ethical concerns due to the use of embryonic cells. 

More recently, the use of induced pluripotent stem cells (iPSC) has begun to be explored. 

One of the key benefits of this therapy is that immunosuppression is not needed, as the 

source is the patient’s own somatic cells. However, it implies an increased cost of therapy, 

as it needs to be developed for each patient individually. The first clinical trial with iPSC 

(http://www.umin.ac.jp, UMIN000011929) has recently been performed at the Japanese 

research institute RIKEN, where a 70-year old AMD patient received a transplant of a sheet 

of autologous iPSC-RPE. After one year of follow-up, no adverse events had been detected 

and the patient’s vision remained stable.103 However, this trial has been stopped for the 

second patient enrolled due to genetic changes found in the generated iPSC.104 This group 

has recently shifted their approach towards the use of allogenic human leukocyte antigen 

(HLA)-matched iPSC-RPE, and in March 2017, it was announced that the first patient 

received allogenic iPSC-RPE.105 This approach would be less costly and would avoid the 

effect of the genetic AMD risk variants that the patients carry. Nevertheless, it would most 

likely imply the use of immunosuppressant drugs. Contrary to these promising results of 

the group in RIKEN, in a back-to-back publication, it was reported that autologous adipose 

tissue-derived stem cells were administered bilaterally to three AMD patients in a stem-cell 

clinic, leading to a severe visual loss in all cases.106 These disastrous events highlight that 

even though stem cell therapy holds promise, strict regulations should be applied before 

any treatment with stem cells is administered to patients. 

RPE stem cell therapy might be the best therapeutic option for advanced cases in which 

there is RPE degeneration, however, it involves the transplantation of new cells in a diseased 

environment and, as such, the survival of the new cells may depend on inflammation and 

oxidative stress levels in the host environment. The C3/C3 ratio as a marker of complement 

activation, malondialdehyde levels as a marker of lipid peroxidation, and homocysteine 

levels as an oxidative stress marker, are molecular biomarkers for AMD that may correlate 

with the success of such therapies.107 Moreover, autologous iPSC might not be the 

best option for AMD patients carrying highly penetrant genetic variants, and hESC or  

HLA-matched iPSC may be more effective in these patients. 
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2.2.3 Genome editing

Genome editing through the use of the CRISPR/Cas9 system is a powerful tool for therapy 

development.108 Recently, the first treatment with genome editing has been given to a man  

suffering from Hunter syndrome.109 The first studies for AMD are being carried out in animal 

models. In vivo genome editing using subretinal injections of Cas9 ribonucleoproteins that 

target the VEGFA gene has shown to reduce CNV in an AMD mouse model.110 Moreover, 

this system could be included in a viral vector and delivered to specific cells, as a form of 

gene therapy. In a mouse model of laser-induced CNV, viral delivery of the CRISPR/Cas9 

system edited the KDR gene, abolishing angiogenesis.111 In another recent study in mice, 

an adeno-associated virus vector delivering a small Cas9 targeting the VEGFA and HIF1A 

genes of RPE cells reduced the size of laser-induced CNV.110 These studies represent the 

very first steps towards the use of genome editing for therapy purposes in AMD.

This technology opens up possibilities for correcting genetic variants that give a risk for the 

disease. Several rare variants associated with AMD confer a remarkable high risk, such as 

CFH Arg1210Cys (OR=31.8), CFH Arg53Cys (OR=22.54) and CFI Gly162Asp (OR=20.29),78 

and might be potential targets for genome editing therapies. Consequently, genetic 

analysis would become indispensable in patient selection for gene-editing therapies.

3 Conclusions and future perspectives

Based on the recent findings of Assel at al.,11 dietary supplementation for slowing down 

disease progression should be prescribed to any AMD patient, irrespective of CFH and 

ARMS2 genotypes. However, these findings are based on the AREDS dataset only, and 

future independent prospective studies would be beneficial to corroborate these results, 

as well as to further investigate if other genetic variants may interact with the formulation.

In regard to the pharmacogenetics of anti-VEGF treatment, results are not conclusive yet. 

Nonetheless, recurrent results from multiple studies suggest that SNP rs1061170 in CFH 

may influence response to treatment. This finding could potentially be explained by the 

effect of this SNP on faster disease progression.112 However, this association was not 

detected in the analyses from the CATT and IVAN clinical trials,33,34 therefore warranting 

further investigation. Additionally, the magnitude of the effect of this variant might not 

reach clinical utility and would need to be combined with other genetic variants or clinical 

parameters. Other compelling candidate genetic variants for further evaluation include 

ARMS2 rs10490924, VEGFA rs833061, OR52B4 rs4910623, NRP1 rs2070296, APOE 

ε4 allele, IL8 rs4073 and PEDF rs1136287. However, based on the results of our GWAS 

on visual acuity measures (chapter 2.3) and the GWAS of Yamashiro and colleagues on 

anatomical measures,45 we propose that there is a limited contribution of common genetic 

variants to variability in nvAMD treatment response. We additionally evaluated for the first 

time the influence of rare variants on this treat and found rare variants in the C10ORF88 
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and UNC93B1 genes with large effects on treatment outcome.113 These are compelling 

candidates for replication studies as rare variants with large effects have the potential of 

being implemented in clinical practice for guidance of treatment protocols.

A key problem remains that the definition of response is not consistently defined across 

cohorts. In 2015, in order to provide a consensus, a committee of retinal specialists 

proposed definitions of good, poor and non-response based on a combination of 

anatomical and functional measurements.114 These definitions should be adopted by 

researchers in future studies, which would enable study comparisons in a standardized 

framework. Analysis of the different outcome measures used for these definitions as 

continuous variables would be also highly valuable. Additionally, prospective studies with 

sufficient statistical power would allow sub-phenotype analyses, which may reveal new or 

stronger associations. 

Biomarkers identified in aqueous humor samples are VEGF and IL-6, however, these 

samples are not taken routinely. IL-6, IL-17, TNF-α and C3a have been identified as 

potential systemic biomarkers, and therefore could be readily measured before treatment. 

Moreover, as baseline VEGF has been associated with response in aqueous humor 

samples, it could be further investigated as a systemic biomarker. Recent studies suggest 

that anti-VEGF treatment may lead to an increased risk of GA development.115 Therefore, 

screening of genetic markers together with other biomarkers and clinical parameters for 

effective anti-VEGF therapy planning may become necessary. Clinical trials would however 

be needed before the screening of these biomarkers can be implemented in the clinic.

Complement therapies are being developed for the treatment of GA, and biomarkers for 

complement activity could be useful to identify the most suitable AMD patients for these 

therapies. Based on the results of chapter 3.2, FHR-4 could potentially be a new drug target, 

and also be used as a biomarker for complement activity in AMD. Moreover, levels of the 

specific target of each drug could be a useful biomarker. Therapies undergoing trials are 

targeting FD, C3, properdin and C5. FD levels have been seen to be higher in AMD patients 

compared to controls, and therefore, they could be a useful biomarker for this specific 

therapy. C3 levels do not differ between AMD and controls and properdin and C5 levels have 

not been evaluated. A comprehensive analysis of the complement system components in 

AMD (e.g. by mass spectrometry) could identify new potential biomarkers. However, our 

findings of chapter 3.1 show that genetic variants affecting systemic levels of complement 

activation may not have an influence in the eye. Therefore, how systemic measurements 

reflect the local situation at the disease site needs to be further investigated. 

Additionally, AMD-associated SNPs that associate with systemic complement activation 

can be used as robust biomarkers. The added value of these genetic biomarkers is that, 

as they are associated with disease risk, they most probably reflect complement activity 

in the eye, whereas the overall systemic complement activation may not always be 

representative of the conditions at the disease site. rs12144939, rs1410996 and rs800292 

in CFH, rs4151667, rs641153 and rs9332739 in C2/CFB and rs6795735 and rs2230199 
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in C3 have been reported to be associated with systemic complement activation levels 

and replicated in our GWAS study on chapter 3.1, being therefore reliable markers. 

Additionally, these GWAS study revealed the strongest association for an AMD-associated 

variant in CFHR4 rs6685931, representing a new compelling biomarker for the disease. 

Moreover, rare variants in the CFH gene (Arg127His, Arg175Pro and Cys192Phe), in 

the CFI gene (Gly119Arg, Gly188Ala and Ala240Gly) and in the C9 gene (Arg95Ter and 

Pro167Ser) have been associated with altered FH, FI and C9 levels respectively. However, 

the magnitude of the effects of these genetic variants at the disease site still needs to be 

evaluated. Additionally, other AMD-associated variants for which a systemic effect has not 

been detected might have a local effect. Consequently, genetic studies on complement 

activation levels in aqueous humor samples or other local eye sample types are greatly 

needed. The identified genetic factors may be used alongside systemic complement 

activation levels and other environmental factors such as BMI and triglyceride levels to 

identify AMD patients with a burden of the complement system driving their disease. In 

this regard, we built a model of complement activation including AMD-associated factors 

in chapter 3.1, which may serve as a starting point for future studies.

Other new therapeutic approaches will most probably not be effective in for all AMD 

patients. As a consequence, a deeper molecular characterization of AMD patients including 

proteomics, metabolomics, transcriptomics and genomics is essential. Such in-depth 

characterization will help to understand the molecular drivers in each individual patient 

and to develop pharmac-omics, paving the way towards precision medicine in AMD.
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Summary

 

Age-related macular degeneration (AMD) is the most common cause of blindness in the 

elderly and affects approximately 1 in 10 individuals of 85 years of age. AMD patients 

experience a loss of central vision, blurred vision and have less ability to discriminate 

colors. As a consequence, they are impaired in their daily life activities such as reading and 

face recognition, and may lose their independency in the retirement ages. 

In AMD pathogenesis, degeneration of the central retina, termed the macula, occurs. 

This degeneration is associated with extracellular accumulation of debris called drusen, 

which can be easily identified by ophthalmologists as yellowish spots on photographs 

of the retina. Visual loss occurs in the advanced stage of AMD, which can be subdivided 

into two types:  georgraphic atropy (GA) and choroidal neovascularization (CNV). In the GA 

type, degeneration of the outer segments of the retina occurs, and in the CNV type there is 

abnormal growth of exudative blood vessels from the choroid.   

Both environmental and genetic factors play a role in AMD development, as it is a complex 

trait. The risk of AMD development increases exponentially with age, which is the strongest 

non-genetic risk factor. Genetic factors play an important role in AMD development. The 

largest genome-wide association study (GWAS) recently revealed 52 genetic variants 

that are associated with AMD. These variants locate in genes that are involved in 

neovascularization and the complement system among others, implicating these pathways 

in the molecular mechanisms of the disease.

The genetic background, demographics and lifestyle can influence how a patient responds 

to a specific treatment. Therefore, healthcare could be improved by taking into account 

the individual characteristics of each patient when prescribing medication. This emerging 

approach in medicine is termed precision medicine. For this purpose, genetic variants are 

robust and easily measurable biomarkers that can be used to predict response to a drug. 

The overarching goal of this thesis was to identify genetic biomarkers that can be used to 

adapt treatment options to the needs of each AMD patient. 

The only therapeutic intervention available for advanced AMD is the use of anti-vascular 

endothelial growth factor (VEGF) antibodies to treat the CNV form. These antibodies block 

VEGF, the master regulator of the pathological CNV formation. Although these drugs have 

led to significant vision improvement for the AMD patients, the individual patient response is 

highly variable. Around 20% of the patients continue losing vision despite receiving treatment. 

In chapter 2 of this thesis, we aimed to identify genetic biomarkers that associate with 

anti-VEGF treatment response in advanced AMD patients with CNV. To that end, we first 

conducted a candidate gene analysis described in chapter 2.1, in which we analyzed four 

single nucleotide polymorphisms (SNPs) located in the neuropilin-1 gene (NRP1). NRP1 was 

a compelling candidate because it is a co-receptor of VEGF and enhances the transduction 

of downstream signaling. Moreover, it has been described to affect the evolution of CNV 
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formation in AMD and VEGF mediated vascular leakage. The results of this study suggest 

that the SNP rs2070296 associates with worse visual acuity treatment outcome. In our next 

studies, we moved into genome-wide association analyses, in which more than a million 

variants distributed across the genome were analyzed in a hypothesis-free approach 

GWAS. In chapter 2.2, we describe the results of a GWAS performed by comparing 

pools of DNA of responders and non-responders, carried out by the group of Prof. Baird 

at the Centre for Eye Research in Australia. In our replication cohort, we confirmed that 

SNP rs4910623 in the OR52B4 gene was associated with treatment response. Finally, in 

chapter 2.3, we performed a larger GWAS on treatment response followed by a replication 

analysis, by leading a large collaboration of several groups belonging to the International 

AMD Genomics Consortium. In essence, we could not confirm any of the associations 

previously reported in literature, nor did we find an association with any of the 52 AMD-

associated variants. However, in this study we evaluated for the first time rare genetic 

variation and found that rare protein-altering variants in the C10orf88 and UNC93B1 genes 

may associate with severe vision loss despite treatment.

For GA, the second type of advanced AMD, there is no available treatment to date. However, 

several therapies that target the complement system are currently being evaluated in clinical 

trials. Due to the high variability in complement activation levels among AMD patients, we 

hypothesized that patients with higher levels of complement activation will most benefit 

from complement-inhibiting therapies. Therefore, in chapter 3 of this thesis we aimed to 

find genetic variants that associate with complement activation levels. In order to do that, 

we carried out a GWAS on systemic complement activation levels, described in chapter 3.1. 

This analysis revealed that complement activation was independently associated with the 

SNP rs3753396 located in the complement factor H gene (CFH) and the SNP rs6685931 

located in the complement factor H related 4 gene (CFHR4). The SNP rs3753396 in CFH 

did not associate with AMD, which led us to the conclusion that the relationship between 

systemic and local complement activation in the eye merits further investigation. The SNP 

rs6685931 in CFHR4 associated with AMD, and therefore may be used for selecting patients 

for complement-inhibiting therapies. This last finding led us to investigate the role of FHR-4 

in AMD pathogenesis, as described in chapter 3.2. The results of biochemical studies and 

further genetic analyses have led us to pinpoint FHR-4 as a new complement component 

involved in AMD, and a new potential target for the treatment of AMD.

In chapter 4 we reviewed the current status of literature and placed our results in context. For 

biomarkers of response to anti-VEGF drugs, definitions of response should be harmonized 

in order to facilitate study comparisons. Common genetic variants seem to have a limited 

effect on treatment response, and combining several variants may be needed to achieve 

clinical significance. Our results on the analysis of rare variants suggest stronger effects, 

although they warrant replication. For complement-inhibiting therapies, genetic variants 

in complement genes have shown association with systemic complement activation levels 

and are compelling biomarkers. The relationship between systemic and local levels of 

complement activity has therefore become highly relevant. A deep molecular characterization 

of AMD patients including proteomics, metabolomics, transcriptomics and genomics is a 

necessary next step to move forward towards precision medicine for AMD patients.
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Samenvatting

 

Leeftijdsgebonden maculadegeneratie (LMD) is de meest voorkomende vorm van blindheid 

onder ouderen en treft ongeveer 1 op 10 mensen die 85 jaar of ouder zijn. LMD patiënten 

ervaren een verlies van hun centrale gezichtsveld, het onscherp worden van hun zicht, en 

ze zijn minder goed in staat om kleuren te onderscheiden.  In hun dagelijkse activiteiten 

ondervinden ze hier hinder van, bijvoorbeeld tijdens het lezen of bij het herkennen van 

gezichten. LMD beperkt ook de mate van onafhankelijkheid van mensen na hun pensioen. 

Bij patiënten met LMD vindt slijtage en afbraak plaats van het centrale deel van het netvlies, 

dat de macula wordt genoemd. Deze degeneratie is geassocieerd met een ophoping van 

afvalstoffen, drusen, die door een oogarts gemakkelijk te zien zijn als geelachtige puntjes 

op foto’s van het netvlies. Verlies van zicht treedt in de late stadia van LMD op, waarbij twee 

vormen worden onderscheiden: droog (ook wel geografische atrofie - GA) en nat (ook wel 

neovasculaire LMD). Bij GA vindt er een degeneratie plaats van het netvlies. Bij de natte 

vorm van LMD dringen lekkende bloedvaatjes uit het vaatvlies het netvlies binnen.

Zowel omgevingsfactoren als genetische factoren spelen een rol in het ontstaan van LMD. 

Het risico om LMD te krijgen stijgt exponentieel naarmate men ouder wordt, wat leeftijd 

de sterkste niet-genetische risicofactor maakt. Genetische factoren spelen een belangrijke 

rol bij LMD. De grootste genetische associatie studie vond 52 genetische varianten die 

geassocieerd zijn met de ziekte. Deze varianten zitten in genen die betrokken zijn bij het 

ontstaan van nieuwe bloedvaten (neovascularisatie) en ook in genen die betrokken zijn bij 

een onderdeel van het afweersysteem (het complement systeem), wat erop duidt dat deze 

biologische systemen betrokken zijn bij LMD.

Hoe een patiënt reageert op een behandeling kan afhangen van zijn of haar genetische 

achtergrond en levensstijl. De gezondheidszorg zou verbeterd kunnen worden door 

rekening te houden met deze gegevens bij het voorschrijven van een behandeling. Deze 

benadering is sterk in opkomst en heet ‘precision medicine’, ofwel persoonsgerichte 

zorg. Kennis van de genetica levert gemakkelijk meetbare en robuuste biomarkers op die 

gebruikt kunnen worden om behandelsucces te voorspellen. 

Het doel van dit proefschrift was om moleculaire biomarkers te vinden die behandelsucces 

kunnen voorspellen, om zo toekomstige behandelingen te kunnen optimaliseren voor de 

individuele patiënt.

Het enige geneesmiddel dat beschikbaar is voor natte LMD is de behandeling met een 

antistof die ‘vasculair endotheel groei factor’ remt (anti-VEGF).  Deze antistoffen remmen 

VEGF, een belangrijke moleculaire aanjager van het proces waarbij nieuwe bloedvaten 

worden gevormd.  Deze behandeling heeft een belangrijke bijdrage geleverd aan het 

behoud van gezichtsvermogen voor LMD patiënten, maar individuele patiënten reageren 

heel variabel op de behandeling. Ongeveer 20% van de patiënten reageert niet tot 

nauwelijks op de behandeling. In hoofdstuk 2 van dit proefschrift hebben we onderzocht 
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welke genetische biomarkers associëren met het behandelsucces van anti-VEGF in LMD. 

Eerst hebben we vier genetische varianten in het kandidaat gen neuropilin-1 (NRP1) 

geanalyseerd in hoofdstuk 2.1. NRP1 was een interessante kandidaat omdat het een co-

receptor is van VEGF en het moleculaire signaal versterkt. Daarnaast is het betrokken bij 

bloedvatnieuwvorming in LMD en lekkage van bloedvaten onder invloed van VEGF. Onze 

resultaten lieten zien dat een bepaalde genetische variant in NRP1 (rs2070296) associeerde 

met een slechtere uitkomst na behandeling. In onze vervolgstudies zijn we over gegaan 

naar genoomwijde analyses, waarbij meer dan een miljoen genetische varianten over het 

hele genoom tegelijkertijd werden getest. In hoofdstuk 2.2 beschrijven we de resultaten 

van een genoomwijde analyse, waarbij mensen die wel reageerden op de behandeling 

werden vergeleken met mensen die niet reageerden. Dit experiment werd gedaan in 

Australië, onder leiding van professor Paul Baird, van het Centre for Eye Research. In ons 

replicatiecohort konden we bevestigen dat een variant in OR52B4 (rs4910623) betrokken 

was bij behandelsucces. Tenslotte hebben we in hoofdstuk 2.3 zelf een grote genoomwijde 

associatie analyse uitgevoerd in samenwerking met verschillende groepen uit een groot 

internationaal samenwerkingsverband, het International AMD Genomics Consortium. We 

konden eerder gepubliceerde data niet bevestigen in deze studie, en we vonden ook geen 

associatie met de 52 varianten die betrokken zijn bij LMD. Wel vonden we in deze studie 

een mogelijke rol voor zeldzame genetische varianten, met name in de genen C10orf88 en 

UNC93B1, in een slechte uitkomst na behandeling. 

Voor de tweede vorm van LMD, de droge vorm, is op dit moment geen behandeling 

beschikbaar, maar verscheidene klinische studies zijn gaande waarin het complement 

systeem wordt geremd. Omdat de activiteit van het complement systeem sterk variabel 

is tussen LMD patiënten, hadden wij de hypothese dat patiënten met een verhoogde 

complement activiteit het meeste baat zouden hebben bij deze nieuwe behandeling.  In 

hoofdstuk 3 hadden wij daarom als doel om genetische factoren te vinden die geassocieerd 

zijn met complement activiteit. Wij voerden een genoomwijde associatie analyse uit 

(hoofdstuk 3.1) en vonden twee genetische varianten die sterk geassocieerd waren met 

complement activiteit (rs3753396 in het gen CFH en rs6685931 in het gen CFHR4). De 

variant rs3753396 was niet geassocieerd met LMD, wat er sterk voor pleit dat de complexe 

relatie tussen lokale complement activiteit in het oog en in het bloed nader onderzocht 

dient te worden.  De variant rs6685931 in het gen CFHR4 was wel geassocieerd met 

LMD, and kan derhalve gebruikt worden om patiënten te selecteren voor de complement 

remmende behandeling. Deze bevinding leidde er toe om de rol van FHR-4 in het ontstaan 

van LMD nader te onderzoeken, zoals beschreven in hoofdstuk 3.2. De resultaten van deze 

biochemische studies en aanvullende genetische analyses wezen erop dat FHR-4 mogelijk 

betrokken is bij LMD en dat het een nieuwe kandidaat is voor toekomstige behandelingen.

In hoofdstuk 4 vatten we de actuele literatuur over dit onderwerp samen en plaatsten we 

onze eigen resultaten in deze context. Om biomarkers voor behandelsucces na anti-VEGF te 

vinden, zou eerst een eenduidige definitie van behandelsucces opgesteld moeten worden 

zodat verschillende studies met elkaar vergeleken kunnen worden. Veelvoorkomende 

genetische varianten lijken slechts een beperkt effect te hebben op behandelsucces, en het 
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combineren van genetische varianten is mogelijk nodig om een klinisch significant resultaat 

te behalen. Onze resultaten suggereren dat zeldzame genetische varianten mogelijk 

sterkere effecten hebben, maar deze bevindingen dienen gerepliceerd te worden in andere 

cohorten. In de studies waarin we zochten naar biomarkers voor complement activiteit 

vonden we enkele interessante kandidaten in complement genen. Het werd duidelijk dat 

de relatie tussen complement activiteit in het oog en in het bloed zeer relevant is en nader 

onderzocht dient te worden. Een gedetailleerde profilering van LMD patiënten, waarbij 

proteomics, metabolomics, transcriptomics en genomics worden samengenomen, is een 

belangrijke vervolgstap om persoonsgerichte zorg voor LMD patiënten te ontwikkelen. 
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Resumen

 

La degeneración macular asociada a la edad (DMAE) es la causa más común de ceguera 

en la vejez y afecta aproximadamente a 1 de cada 10 personas de 85 años de edad. Los 

pacientes con DMAE experimentan una pérdida de visión central, visión borrosa y tienen 

una menor capacidad para discriminar colores. Como consecuencia, estos pacientes se 

ven perjudicados en sus actividades cotidianas, como la lectura y el reconocimiento facial, 

y pueden perder su independencia en edades de jubilación.

En la patogénesis de la DMAE se produce una degeneración de la parte central de la retina, 

denominada mácula. Esta degeneración está asociada con la acumulación extracelular de 

desechos llamados drusas, las cuales pueden ser identificadas como manchas amarillentas 

en fotografías de la retina. La pérdida de visión se produce en la etapa avanzada de la DMAE, 

que se puede subdividir en dos tipos: atrofia geográfica (forma seca) y neovascularización 

coroidea (forma húmeda). En la forma seca, se produce la degeneración de los segmentos 

externos de la retina mientras que en la forma húmeda hay un crecimiento anormal de 

vasos sanguíneos en la coroides, los cuales son exudativos.

Tanto factores ambientales como genéticos están involucrados en el desarrollo de DMAE 

ya que se trata de un fenotipo complejo. El riesgo de desarrollo de DMAE aumenta 

exponencialmente con la edad, siendo este el factor de riesgo no genético de mayor 

relevancia. Los factores genéticos juegan también un papel clave en el desarrollo de 

DMAE. El estudio de asociación del genoma completo (GWAS) más extenso llevado a cabo, 

reveló recientemente 52 variantes genéticas que están asociadas con la DMAE. Estas 

variantes se localizan, entre otros, en genes que están implicados en neovascularización y 

el sistema del complemento, implicando estas vías en los mecanismos moleculares de la 

enfermedad.

La manera en la que un paciente responde a un tratamiento específico puede variar 

dependiendo de la génetica, la demografía y el estilo de vida dicho paciente. Por ello, la 

atención médica podría mejorarse teniendo en cuenta las características individuales de 

cada paciente a la hora de prescribir medicamentos. Este enfoque emergente en medicina 

se denomina «medicina de precisión». Las variantes genéticas son biomarcadores robustos 

y fáciles de medir que pueden ser utilizados para predecir la respuesta a un fármaco y 

como consecuencia, son utilizados en el campo de la medicina de precisión. El objetivo 

general de esta tesis ha sido la identificación de biomarcadores genéticos que puedan 

utilizarse para adaptar las opciones de tratamiento a las necesidades de cada paciente 

con DMAE.

La única intervención terapéutica disponible para la DMAE avanzada consiste en 

anticuerpos contra el factor de crecimiento endotelial vascular (FCEV) para tratar la forma  

húmeda. Estos anticuerpos bloquean FCEV, que es el regulador principal de la formación 

patológica de neovascularización en la coroides. Aunque estos fármacos producen 
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una mejora significativa en la visión de los pacientes con la forma húmeda de DMAE, la 

respuesta individual de cada paciente es muy variable. De hecho, alrededor del 20% de los 

pacientes continúa perdiendo la visión a pesar de recibir tratamiento. 

El objetivo del capítulo 2 de esta tesis consiste en identificar biomarcadores genéticos 

de respuesta al tratamiento anti-FCEV en pacientes con la forma húmeda de DMAE. En 

primer lugar realizamos un análisis de genes candidatos descrito en el capítulo 2.1, en 

el cual analizamos cuatro polimorfismos de nucleótido único (SNPs) ubicados en el gen 

neuropilin-1 (NRP1). NRP1 es un correceptor de FCEV y mejora la transducción de la 

señalización aguas abajo. Además, NRP1 afecta el desarrollo de la neovascularización 

en la coroides y a la filtración vascular mediada por FCEV en DMAE. Los resultados de 

este estudio sugieren que el SNP rs2070296 está asociado con una peor respuesta al 

tratamiento en términos de agudeza visual. Es decir, tras el tratamiento, la mejora en 

agudeza visual de los pacientes con esta variante genética es menor en comparación con 

la de los pacientes que no son portadores de esta variante genética. En los siguientes 

estudios, ampliamos nuestro análisis al genoma completo y evaluamos más de un millón 

de variantes distribuidas a lo largo de todo el genoma sin tener ninguna hipótesis a priori. 

En el capítulo 2.2 describimos los resultados de un GWAS realizado comparando ADN de 

pacientes que responden a la terapia con el ADN de pacientes que no responden. Este 

trabajo se llevo a cabo en el grupo del Prof. Baird en el Centro de Investigación de Ojos 

en Australia. En nuestra cohorte de replicación, confirmamos que el SNP rs4910623 en el 

gen OR52B4 está asociado con la respuesta al tratamiento. Finalmente, en el capítulo 2.3, 

realizamos un GWAS sobre la respuesta al tratamiento seguido de un análisis de replicación 

en el que incluimos un mayor número de pacientes, liderando una gran colaboración de 

varios grupos pertenecientes al “International AMD Genomics Consortium”. En esencia, 

no pudimos confirmar ninguna de las asociaciones previamente descritas, ni encontramos 

una asociación con ninguna de las 52 variantes asociadas con la DMAE. Sin embargo, en 

este estudio se incluyeron  por primera vez variantes genéticas raras y encontramos que 

variantes genéticas raras que alteran las proteínas codificadas por los genes C10orf88 y 

UNC93B1 están asociadas con una pérdida de visión severa a pesar del tratamiento.

Para la forma seca, el segundo tipo de DMAE avanzada, no hay ningún tratamiento 

disponible hasta la fecha. Sin embargo, se están llevando a cabo ensayos clínicos que 

evalúan terapias que inhiben el sistema del complemento. Debido a que los pacientes 

con DMAE exhiben una gran variabilidad en los niveles de activación del complemento,  

planteamos la hipótesis de que los pacientes con la forma seca y los niveles más altos 

de activación del complemento serán los que más se beneficien de este tipo de terapias. 

Por ello, el propósito del capítulo 3 de esta tesis ha sido identificar variantes genéticas 

asociadas con los niveles de activación del complemento. Con este fin, llevamos a cabo un 

GWAS sobre los niveles de activación sistémica del complemento, el cual está descrito en 

el capítulo 3.1. Este análisis reveló que la activación del complemento está asociada con el 

SNP rs3753396 localizado en el gen del factor H del complemento (CFH) y el SNP rs6685931 

localizado en el gen numero 4 relacionado con el factor H del complemento (CFHR4). El 

SNP rs3753396 en el gen CFH no resultó estar asociado con la DMAE, lo que nos llevó a la 
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conclusión de que la relación entre la activación sistémica y local (en el ojo) merece mayor 

investigación. El SNP rs6685931 en el gen CFHR4 está, por el contrario, asociado con la 

DMAE y por lo tanto se puede usar para seleccionar pacientes para terapias que inhiban 

el sistema del complemento. Este último hallazgo nos llevó a investigar el papel de FHR-

4 en la patogénesis de la DMAE, como se describe en el capítulo 3.2. Los resultados de 

estudios bioquímicos y análisis genéticos sugieren que FHR-4 es un nuevo componente 

del complemento involucrado en la DMAE y que por lo tanto, podría ser suponer un nuevo 

objetivo para su tratamiento.

En el capítulo 4 analizamos la literatura actual en este campo científico y pusimos nuestros 

resultados en contexto. En relación con los biomarcadores para la respuesta a los fármacos 

anti-FCEV, es necesario armonizar las definición de la respuesta al tratamiento para 

facilitar las comparaciones entre estudios. Las variantes genéticas comunes parecen tener 

un efecto minoritario en la respuesta al tratamiento. Por ello, tendrán que combinarse 

varias variantes  para poder usarse como biomarcadores con aplicación clínica. Nuestros 

resultados en el análisis de variantes raras sugieren efectos de mayor magnitud, aunque 

es necesario  analizar resultados en otras cohortes. Para las terapias que inhiben el 

sistema del complemento, las variantes genéticas que se asocian con los niveles de 

activación sistémica del complemento son biomarcadores convincentes. Aún así, es 

necesario analizar en más profundidad la relación entre la actividad del complemento a 

nivel sistémico y local. Para concluir, una caracterización molecular profunda de pacientes 

con DMAE, que incluya proteómica, metabolómica, transcriptómica y genómica, es un 

paso necesario para avanzar hacia la medicina de precisión en pacientes con DMAE.
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