
AGE-RELATED
MACULAR DEGENERATION

FROM RISK PROFILES
TOWARD PREDICTION MODELS

GABRIËLLE H.S. BUITENDIJK





Age-related Macular Degeneration:

from risk profiles towards prediction models

Gabriëlle H.S. Buitendijk



Financial support

The studies described in this thesis were supported by the Netherlands Organization of Scientific 

Research (NWO) (170885606 to the BRAMD Study), NWO investments (175.010.2005.011, 911-

03-012 to the Rotterdam Study), the Netherlands Genome Initiative (NGI)/NOW (050-060-081 to 

the Rotterdam Study), Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands 

Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases 

in the Elderly (014-93-015; RIDE2), the Ministry of Education, Culture and Science, the Ministry for 

Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam, 

Stichting Macula Fonds, Stichting Nederlands Oog Onderzoek (SNOO), Rotterdamse Stichting  

Blindenbelangen, Stichting Oogfonds Nederland, Landelijks Stichting voor Blinden en Slechtzienden, 

Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, Erasmus Trustfonds, Prof. Dr. 

Henkes stichting.

Printing of this thesis was supported by

Rotterdamse Stichting Blindenbelangen, Stichting Blindenhulp, Stichting Ooglijders, Landelijke 

Stichting voor Blinden en Slechtzienden, afdeling Epidemiologie Erasmus MC, Koolhaas 

Paprika, Springfield Nutraceuticals, Medical Workshop, Ergra Low Vision, Théa Pharma, Bayer, 

Vitaminenoprecept, Ursapharm, Laméris Ootech, Tramedico, Oculenti, Sanmed B.V., Horus Benelux 

B.V., Low Vision Totaal, Oogplein, Chipsoft, ZEISS, Laservision, Synga Medical, MediTop, Ophtec, 

Rockmed, Slechtziend.nl and Allergan.

Cover image: A whippet in a forest of neovascularization under a sky filled with drusen

Cover design: Evelien Jagtman (evelienjagtman.com)

Layout: Design Your Thesis (designyourthesis.com)

Printed by:  Ridderprint B.V. (ridderprint.nl)

ISBN:  978-94-6299-856-8

 

 

Copyright © 2018 G.H.S. Buitendijk

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 

transmitted in any form or by any means without prior permission from the author of this thesis, or, 

when appropriate, from the publishers of the publications in this thesis.



Age-related Macular Degeneration:

from risk profiles towards prediction models

Leeftijdsgebonden Maculadegeneratie:

van risicoprofielen tot predictiemodellen

P R O E F S C H R I F T

ter verkrijging van de graad van doctor aan de

Erasmus Universiteit Rotterdam

op gezag van de

rector magnificus

Prof.dr. H.A.P. Pols

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

woensdag 28 maart 2018 om 15.30 uur

door

Gabriëlle Helena Susanne Buitendijk

geboren te Rotterdam



PROMOTIECOMMISSIE

 

Promotoren: Prof. dr. C.C.W. Klaver

 Prof. dr. J.R. Vingerling

Overige leden: Prof. dr. M.A. Ikram

 Prof. dr. A.I. den Hollander

 Prof. dr. C. Delcourt





TABLE OF CONTENTS

Chapter 1 – Introduction

1.1 General introduction 9

1.2 Aims of this thesis and study populations 17

Chapter 2 – Burden of AMD

2.1 Prevalence of age-related macular degeneration in Europe: the past and the 

future

21

2.2 Visual consequences of refractive errors in the general population 35

Chapter 3 – Aspects of imaging techniques in population-based research

3.1 Epidemiology of reticular pseudodrusen in age-related macular degeneration: 

The Rotterdam Study

51

3.2 Automatic identification of reticular pseudodrusen using multimodal retinal 

image analysis

67

Chapter 4 – Environmental risk factors

4.1 Trace elements, vitamins, and lipids and age-related macular degeneration: an 

overview of the current concepts on nutrients and AMD

83

4.2 Recommended diet intake of vegetables, fruit, and fish is beneficial for age-

related macular degeneration

103

4.3 Thyroid function and age-related macular degeneration: a prospective 

population-based cohort study: The Rotterdam Study

121

4.4 Antiplatelet and anticoagulant drugs do not affect visual acuity in neovascular 

age-related macular degeneration in the BRAMD trial

135

Chapter 5 – Genetic markers and gene-environment interactions

5.1 Genetics and gene-environment interactions in age-related macular 

degeneration

153

5.2 Seven new loci associated with age-related macular degeneration 175

5.3 Genetic susceptibility, dietary antioxidants, and long-term incidence of age-

related macular degeneration in two populations

191

Chapter 6 – Prediction and personal genome testing

6.1 Prediction of age-related macular degeneration in the general population:

The Three Continent AMD Consortium

207

6.2 Direct-to-consumer personal genome testing for age-related macular 

degeneration

229



Chapter 7 – General discussion and summary

7.1 General discussion 245

7.2 Summary 259

7.3 Samenvatting 263

Chapter 8 – Epilogue

8.1 Acknowledgements – Dankwoord 269

8.2 PhD portfolio 273

8.3 Bibliography 277

8.4 About the author 285





Chapter 1.1

General introduction



10 Chapter 1.1

GENERAL INTRODUCTION

This thesis comprises studies on the common eye disorder age-related macular degeneration (AMD). 

In the introduction, I will first focus on the structures of the eye most important to the disease, then 

explain the state of knowledge prior to my studies, and subsequently discuss the outline of my thesis.

Anatomy and physiology of the eye

To create vision, light needs to travels through many structures of the eye: cornea, anterior chamber, 

through the pupil, lens, vitreous body, and retina (Figure 1). Photoreceptor cells in the retina absorbs 

light photons by the visual pigment and translate these first in a biochemical message and then in an 

electrical signal that can stimulate the succeeding neurons of the retina. This signal is subsequently 

transmitted through the optic nerve to the occipital cortex of the brain via the visual pathway.

The retina consists of two primary layers: the neurosensory retina and the retinal pigment epithelium 

(RPE). Directly underneath the RPE lies Bruch’s membrane, which separates the RPE from the 

choriocapillaris and the choroid, which are vascular structures that nourishes the retina. The deepest 

outer fibrous layer of the eye is the sclera, which functions as the external shell of the eye.

FIGURE 1 - Anatomy of the human eye (Figure adapted from www.biology-questions-and-answers.com/images/

Human-Eyes.jpg).

The neurosensory retina consists of eight layers, including the photoreceptor cell layer (Figure 2). 

There are two types of photoreceptor cells, rods and cones. Cones have optimal function in bright 

light and are responsible for fine resolution, spatial resolution, and color vision, while rods function 

optimal in dim-light and sense contrast, brightness, and motion. A yellow colored pigment is 

highly concentrated in the ganglion cells, cone axons, and Muller cells of the optical center of the 

posterior pole, called macula lutea. This macular pigment consists of lutein, zeaxanthin and meso-

zeaxanthin, and these pigments offer protection to the retina by absorbing hazardous ionizing blue 

and ultraviolet light. Fine detailed and color vision is mainly acquired in the fovea, which is located in 

the center of the macula. Underneath the photoreceptor layer lies the RPE, a monolayer of epithelial 

cells that are in close contact with the photoreceptors. This cell layer has many functions that are 

critical to the visual process, such as phagocytosis of photoreceptor outer segments, synthesis 

of interphotoreceptor matrix, absorption of light, vitamin A metabolism, and transport of other 

molecules. If the RPE becomes dysfunctional, like in AMD, the neurosensory retina will not function 

properly and vision is disturbed.
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FIGURE 2 - Layers of the human retina. The following layers are disclosed in the optical coherence tomography 

image of a human macula, from top to bottom: internal limiting membrane (ILM), nerve fiber layer (NFL), 

ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer 

nuclear layer (ONL), external limiting membrane (ELM), ellipsoid zone (EZ), retinal pigment epithelium/Bruch’s 

membrane (RPE/BM), choriocapillaris (CC), choroid (C), choroid sclera junction (CSJ).

Age-related macular degeneration

AMD is a chronic disease of the macula and is the leading cause of blindness in elderly, particularly 

in those of European descent. About 30-50 million persons are affected in the world and this 

number is expected to increase dramatically with the exponentially aging population.1 AMD can be 

stratified in two severity stages: early and late AMD (Figure 3). Early AMD is mostly asymptomatic and 

characterized by drusen (sub-RPE deposits), reticular pseudodrusen (deposits above the RPE), and 

pigmentary changes. Late AMD is the visual threatening end-stage of AMD which can be subdivided 

into geographic atrophy (dry AMD) and choroidal neovascularization (wet AMD). Geographic atrophy 

is characterized by atrophy of the RPE and neurosensory retina. In choroidal neovascularization 

abnormal new blood vessels from the choroid grow into the retina, which can easily bleed, leak fluids 

and cause fibrovascular scarring.2 Having signs of early AMD will increase the risk of developing late 

AMD. The larger the area, size and the type of drusen and pigmentary changes, the higher the risk of 

developing late AMD.3,4

Epidemiology

Disease frequency

The prevalence of early and late AMD has been established in several parts of the world. For 

Caucasians in the United States of America, over 40 years of age, the overall prevalence of early AMD 

(indicated by large drusen) showed much more variation than that of late AMD; overall prevalence 

of early AMD was estimated at 6.12%; prevalence of late AMD at 1.47%.5 Age-specific prevalence for 

both early and late AMD increased with advancing age in all ethnicities. As for incidence figures, the 

10-year risk of late AMD was estimated to be virtually nil for those aged 55 years, but increased to 

11% for those aged 80 years and older.6 Studies in Europe show comparable estimates for both early 

and late AMD.4,6,7
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FIGURE 3 - Stages of age-related macular degeneration (AMD) disclosed using different imaging methods. 

The different images represent 1) normal retina without signs of AMD, 2) early AMD, 3) late AMD – subtype 

geographic atrophy, and 4) late AMD – subtype choroidal neovascularization, and were obtained using A) 

fundus color photographs, B) near-infrared imaging, C) fundus autofluorescence, D) optical coherence 

tomography.

Risk factors

Many risk factors for AMD have been identified; including age, smoking, higher body mass index 

and increased serum complement activation. Cardiovascular risk factors such as hypertension and 

lipid levels may be associated with an increased risk of AMD.6,8-10 Intake of antioxidants, in particular 

lutein and zeaxanthin, from diet and supplements have been associated with a protective effect.11-13 

Positive family history has been known for many years to be an important risk factor14, indicating that 

genetic predisposition plays an significant role. Genetic studies have confirmed this hypothesis and 

found several genes associated with AMD. These genes include commonly occurring risk variants. 

The most important and frequently replicated variants are located in the CFH, ARMS2, C2/CB and 

C3 genes. Smaller effects were found in several other genes, including APOE, LIPC, LPL, CETP, ABCA1 

and TIMP3 genes.6 The known variants in these associated genes do not fully explain the heritability 

of AMD, which has been determined to be between 65-70%.15,16 Unknown variants, gene-gene 

interactions, and gene-environment interactions could explain the missing heritability in AMD.

Treatment

Preventive measures like cessation of smoking, healthy diet and supplementation of anti-oxidants 

are at this time the only option for those with early and dry AMD. For wet AMD, anti-vascular 

endothelial growth factor treatment aimed at cessation of blood vessel growth and impermeability 

of endothelium is currently the only available treatment.17,18 However, this is not a definite cure and 

will improve and maintain visual acuity only for a limited period of time.19 Many trials are currently 

testing newly developed medication focusing on other disease mechanisms in early and dry AMD.

Imaging techniques

AMD features can be disclosed using various imaging techniques (Figure 3). Ophthalmoscopy can 

be used to identify the majority of disease features, and the obtained image can be captured using 

color fundus photography (CFP). Other techniques can help identify lesions with an increased 

sensitivity. Confocal scanning laser ophthalmoscopy can be used for non-invasive imaging like 

fundus autofluorescence (FAF) and near-infrared imaging (NIR). FAF uses short wavelengths (blue 
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light) to excite lipofuscin in the retina, while NIR uses wavelengths in the infra-red spectrum and 

reveals structures based on light reflectivity. CFP, FAF and NIR imaging are two dimensional, while 

optical coherence tomography (OCT) provides a cross-sectional image of the retina and thereby 

reveals the Z-axis. OCT distinguishes the retinal layers based on differences in light reflectivity. In 

particular anatomical changes and their relation to location can easily be identified using this non-

invasive technique.

Gaps of Knowledge

AMD is a chronic complex disease of a predominantly unknown etiology for which limited 

treatment options are available. In general, the late stages of the disease ultimately cause severe 

visual impairment provided that the patient lives long enough. Identification of new risk factors 

and in depth comprehension of interactions between risk factors may help elucidate the intricate 

pathogenesis of this disease. Current epidemiologic studies often do not allow valid extrapolation of 

findings, because they are too small or lack appropriate study designs to obtain conclusive results. 

They barely go beyond the study of single relationships. In order to expand current genetic and 

epidemiologic knowledge, large, well designed longitudinal studies, international collaborations 

using harmonized methodology and grading protocols, and applications of new imaging techniques 

are needed. Implementation of these strategies will help gain more homogeneous phenotypes and 

a plethora of risk factors for analysis. Improved risk profiling is likely to lead to better identification 

of high-risk groups, and may offer new leads for therapy. Validated prediction models can be used in 

the clinic for patient management. These gaps of knowledge and the inference that arises by filling 

them was the driving force behind this thesis.
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AIMS OF THIS THESIS

This thesis describes epidemiologic and genetic studies on AMD. The major goals of our studies were:

Chapter 2: to assess the frequency and impact of AMD in Europeans

Chapter 3: to evaluate the merit of new imaging techniques for diagnosis and risk assessment

Chapter 4: to identify new environmental risk factors for AMD

Chapter 5: to investigate genetic associations and gene-environment interactions in large study 

populations

Chapter 6: to assess the predictive value of risk factors associated with AMD

STUDY POPULATIONS ON WHICH THIS THESIS IS BASED

We have addressed these aims in various study populations. We joined efforts with study populations 

outside the Netherlands to enlarge the study population in order to improve statistical power for 

analysis, and enable risk calculations for relatively rare exposures in a relatively infrequent disease 

outcome (Late AMD occurs in ~1-2% of the elderly population). A short description of these studies 

and consortia is listed below.

The Rotterdam Study1 – a population-based study which started in 1990. The current study consists 

of three cohorts and includes almost 15,000 participants living in the suburb Ommoord, a district 

of Rotterdam, the Netherlands. The aim of this study is to identify risk factors in cardiovascular, 

endocrine, hepatic, neurological, ophthalmic, psychiatric and respiratory diseases in elderly people. 

(Chapter 2, 3 & 4)

BRAMD Study2 –a double blind randomized-controlled multicenter trial comparing the efficacy of 

intravitreal bevacizumab versus ranibizumab in persons diagnosed with exudative AMD. (Chapter 4)

Three Continent AMD Consortium3 – a consortium of three population-based studies representing 

three continents. The entire study population consists of almost 24,500 participants which are 

derived from the Beaver Dam Eye study, from Beaver Dam, Wisconsin, United States of America; the 

Blue Mountains Eye study from Sydney, Australia, and our own Rotterdam Study. Epidemiology of 

AMD is their main focus. (Chapter 5 & 6)

European Eye Epidemiology (E3) Consortium4 –a collaborative network of 41 studies across Europe, 

including the Rotterdam Study, providing ophthalmologic data on 170,000 European participants. 

The aim of this consortium is to increase understanding of eye diseases and vision loss in Europe. 

(Chapter 2)

AMD Gene Consortium5 – a worldwide collaborative study analyzing the genetics of AMD, involving 

18 studies (including the Rotterdam Study) with over 17,000 cases of late AMD and 60,000 controls. 

(Chapter 5)
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ABSTRACT

Purpose Age-related macular degeneration (AMD) is a frequent complex disorder in elderly of 

European ancestry. Risk profiles and treatment options have changed considerably over the years, 

which may have affected disease prevalence and outcome. We determined prevalence of early and 

late AMD in Europe from 1990-2013 using the European Eye Epidemiology (E3) consortium, and 

made projections for the future.

Design  Meta-analysis of prevalence data. 

Participants A total of 42080 individuals aged 40 years of age and older participating in fourteen 

population-based cohorts from ten countries in Europe.

Methods AMD was diagnosed on fundus photographs using the Rotterdam Classification. 

Prevalence of early and late AMD was calculated using random effects meta-analysis stratified for 

age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual 

acuity (BCVA) was compared between late AMD subtypes geographic atrophy (GA) and choroidal 

neovascularization (CNV). 

Main outcome measures Prevalence of early and late AMD, BCVA, and number of AMD cases.

Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1-5.0) in those 

aged 55-59 years to 17.6 % (95% CI 13.6-21.5) in aged 85+ years; for late AMD these figures were 0.1% 

(95% CI 0.04 - 0.3) and 9.8% (95% CI 6.3-13.3) respectively. We observed a decreasing prevalence of 

early and late AMD after 2006, which became most prominent after age 70. Prevalences were similar 

for gender across all age groups except for late AMD in the oldest age category, and a trend was 

found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer 80+ 

year old subjects with CNV were visually impaired (p =0.016). Projections of AMD showed an almost 

doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals 

in Europe with early AMD will range between 14.9-21.5 million, and for late AMD between 3.9-4.8 

million. 

Conclusion We observed a decreasing prevalence of AMD and an improvement in visual acuity in 

CNV occurring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti-

vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the 

numbers of affected subjects will increase considerably in the next two decades. AMD continues to 

remain a significant public health problem among Europeans.
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INTRODUCTION

Age-related macular degeneration (AMD) can cause irreversible blindness and is the leading cause 

of visual impairment in the elderly of European ancestry.1 Two stages are known for this disease: 

early AMD, which is characterized by drusen and pigmentary changes, and late AMD, which can be 

distinguished in two subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV).2

Worldwide estimates approximated that 30 to 50 million people are affected by AMD3,4, and these 

numbers are expected to increase over time due to the aging population.1,5-9 Although multiple small 

studies have assessed the prevalence of AMD and its relation with visual decline at various places in 

Europe10-12, a clear overview for Europe as a whole is lacking13. Comprehensive epidemiologic figures 

on AMD in Europe would help proper planning for public health and eye care policy makers. 

Recent studies report a decrease in AMD associated blindness and visual impairment14,15, which are 

likely to be due to improved diagnostic procedures and hence earlier diagnosis, and the introduction 

of anti-vascular endothelial growth Factor (VEGF) therapy.14-16 Anti-VEGF therapy for CNV was 

introduced in 2004 and, since 2006, it has been widely used for clinical care in Europe.17,18 However, 

the impact of anti-VEGF therapy on general visual function of persons with AMD in Europe has not 

been sufficiently studied.1,16

In this study, we investigated the prevalence of both early and late AMD in Europe using summary 

data of cohort studies from the European Eye Epidemiology (E3) Consortium. We analyzed changes 

in prevalence over time, compared geographic regions and studied differences between men 

and women. Moreover, we analyzed the visual acuity of affected individuals before and after the 

introduction of anti-VEGF therapy and predicted the number of persons with AMD by 2040 in Europe. 

METHODS

Study population

Fourteen population-based cohort studies participating in the E3 consortium contributed to this 

analysis. This consortium consists of European studies with epidemiologic data on common eye 

disorders; a detailed description of the E3 consortium has been published elsewhere.16 For the 

current analysis, studies with gradable macular fundus photographs (n=42,080 participants) and 

participants aged 40 years and older provided summary data. Participants were recruited between 

1990 and 2013 from the following countries: Estonia, France, Germany, Greece, Italy, Northern Ireland, 

Norway, Netherlands, Spain and Portugal19,20, United Kingdom (Table 1).16 The composition of AMD 

in each cohort is shown in Figure 1 (available at www.aaojournal.org). The study was performed in 

accordance with the Declaration of Helsinki for research involving human subjects and the good 

epidemiological practice guideline.

Grading of age-related macular degeneration

Both eyes of each participant were graded and classified separately by experienced graders or 

clinicians and the most severe AMD grade of the worse eye was used for classification of the person. 

To harmonize classification of AMD, studies were graded or re-classified according to the Rotterdam 

Classification as previously described21 . Main outcomes of this study were early AMD (grade 2 or 

3 of the Rotterdam Classification) and late AMD (grade 4 of the Rotterdam Classification). Persons 

with late AMD were stratified in GA and CNV or MIXED (both GA and CNV present in one person, 

either both types in the same eye, or one type per eye), which is henceforth in this article referred to 
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as CNV. The Tromsø Eye Study, Thessaloniki Eye Study and European Prospective Investigation into 

Cancer and Nutrition (EPIC) study had fundus photograph grading that could not be converted to 

match the definition of early AMD of the Rotterdam Classification. Therefore, these three studies only 

participated in the Late AMD analysis.

Visual impairment

Visual acuity was measured for each eye separately as best corrected visual acuity (BCVA) in two 

categories; ≥0.3 and <0.3. When BCVA differed in the two eyes, visual acuity of the best eye was used 

to classify the person. Low vision and blindness were defined as visual acuity of <0.3 and further 

referred to as visually impaired.

Visual acuity was measured for each eye separately as best corrected visual acuity (BCVA) in two 

categories; ≥0.3 and <0.3. When BCVA differed in the two eyes, visual acuity of the best eye was used 

to classify the person. Low vision and blindness were defined as visual acuity of <0.3 and further 

referred to as visually impaired.  

Projection of AMD

The projection of AMD cases in Europe from 2013 to 2040 was calculated using the prevalence data 

for 5-year age categories obtained from the meta-analysis. Two different scenarios were used to 

calculate the projection. In the first scenario, it was assumed that the prevalence of both early and 

late AMD will remain stable until 2040. This scenario accounted for changes in population structure 

only. The second scenario followed the trend of decreasing prevalence based on data from the meta-

analysis of the E3 consortium regarding the period 2006-2013. We calculated the rate of decline, 

with 2013 as the starting point and 2040 as the end point, and made the assumption that the rate 

of decline was decelerating and zero at the end point. For each projected year, prevalences were 

calculated for every 5-year age group, for early AMD from 45 years of age and onwards and for late 

AMD 65 years and onwards. The projected prevalences were multiplied by the predicted European 

population estimates obtained from Eurostat for all 28 countries in Europe, and the sum of individuals 

from all age groups was calculated.22

Statistical analysis

The crude prevalence of early and late AMD were calculated per study for each 5-year age group. 

A random effects meta-analysis was performed by weighing the studies according to sample size, 

for early and late AMD separately for 5-year age groups and for people aged 70 years and older. In 

case of reported zero prevalence, the Haldane correction was used 23. In case of 100% prevalence, 

0.01 was subtracted to prevent exclusion from the analysis. This analysis was repeated, stratified for 

the midpoint year of the study recruitment period before and after the year 2006, for ten-year birth 

cohorts. Furthermore, it was repeated for gender, and for geographical area in Europe based on the 

United Nations Geoscheme.24 A chi-square test was used to compare time trends.

In addition, a meta-analysis was performed for eyes with visual impairment owing to late AMD, and per 

subtype of late AMD. Subsequently, the analysis was stratified for studies conducted before and after 

2006, for which the midpoint year of the study recruitment period was used. The number of visually 

impaired people was calculated before and after 2006. Meta-analysis was performed with Stata 

(StataCorp. 2013. Stata Statistical Software: Release 13, version 13.1. College Station, TX: StataCorp 

LP.) using metaprop. Graphical outputs were constructed with GraphPad Prism 7 (GraphPad Prism 

version 7.00 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com). 
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FIGURE 3 - Meta-analysis of Early (A) and Late (B) AMD in Europe per age category for the participating studies. 

Meta-analysis of the prevalence of Early (C) and Late (D) AMD before and after 2006

RESULTS

The total study population included in this analysis comprised of 42,080 individuals from 14 studies 

with a median age group of 65-69 years and a slight female predominance (55.8%). The prevalence of 

all age groups together varied per study between 2.3% and 16.8% for early AMD (total N= 2703) and 

between 0.2% and 5.6% for late AMD (total N= 664) (Figure 2A and B, available at www.aaojournal.org; 

to avoid biased estimates only groups larger than 30 individuals are shown; this applied only to the 

Rotterdam Study III age-category 85+). Owing to moderate to high heterogeneity (I2: >= 75% in 73 of 

141 analyses), which was not related to time trends, we applied a random effects model for the meta-

analysis. This provided a prevalence of early AMD increasing with age from 3.5% (95% confidence 

interval [CI] 2.1-5.0) at 55-59 years to 17.6% (95% CI 13.6-21.5) in persons aged 85+ years (Figure 3A, 

and Table 2, available at www.aaojournal.org). The prevalence of late AMD rose from virtually naught 

in the youngest age group to 9.8% (95% CI 6.3-13.3) for those in the highest age group (Figure 3B). 

Taking together all people aged 70+ years, the overall prevalence was 13.2% (95%CI 11.2-15.1) for 

early AMD, and 3.0% (95%CI 2.2-3.9) for late AMD. We investigated prevalence changes over time by 

splitting the E3 consortium into studies conducted before and after 2006. The prevalence of early 

AMD before and after 2006 seemed to rise similarly. For late AMD, a trend of decreasing prevalence 

was observed for the higher age categories after 2006 (Figure 3C and D). Even after exclusion of the 2 

cohorts (Rotterdam Study [RS]-II and European Eye Study [EUREYE]) with the highest prevalences in 
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the highest age category before 2006, results remained similar (data not shown). When we analyzed 

prevalence data as a function of birth cohort, a relatively stable prevalence of early AMD was visible 

across all birth cohorts, whereas a decreasing prevalence of late AMD was seen for the more recent 

birth cohorts (Figure 4A and B).

FIGURE 4 - Meta-analysis of Early (A) and Late (B) AMD in Europe by ten year birth cohort.

Gender and Geographic region

We studied the relation with gender and found no differences in the prevalence of early and late AMD 

between men and women except for the age category of 85 years and older for late AMD (Figure 

5A and B, available at www.aaojournal.org). This category shows a trend for a higher prevalence in 

women compared to men, although confidence intervals overlap. 

To address differential distribution of AMD in Europe, we stratified studies according to three regions 

defined by the United Nations24. In older individuals, we observed a trend towards a higher prevalence 

of early AMD in the North (16% in 70+ years; [95%CI 14-17]) compared to the West (12%; [95% CI 

10-14]) and South (14%; [95% CI 10-17]) (Figure 6A, available at www.aaojournal.org). Likewise, late 

AMD had the highest prevalence in the North (4.2% [95% CI 2-6]), compared to the West (3.1%; [95% 

CI 2-4]) and South (3.1%; [95%CI 2-4]) (Figure 6B, available at www.aaojournal.org). More detailed 

analyses showed that a frequency difference was only present for CNV (Figure 6C and D, available at 

www.aaojournal.org), however, confidence intervals of the regional differences overlapped.

Visual consequences 

As most countries implemented anti-VEGF therapy for CNV from 2006 onwards, we compared visual 

impairment from AMD in studies carried out before and after this year. Before 2006, 54.2% of eyes 

with GA were visually impaired, and 79.8% of eyes suffering from CNV were visually impaired. From 

2006 onwards, the proportion of visually impaired eyes remained the same for GA (47.6%, P = 0.40), 

but dropped to 66.2% (P = 0.026) for CNV (Figure 7A). This improvement was also observed for the 

number of bilaterally visually impaired persons; 120 out of 345 (34.8%) before 2006 to 75 out of 259 

(28.9%, P = 0.13) after 2006. The largest drop was seen for people aged 80 years and older; 85 out of 

175 (48.6%) before 2006 to 46 out of 132 (34.8%, P = 0.016) after 2006 (Figure 7B).
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FIGURE 7 - A) Proportion of visually impaired eyes within each subgroup of Late AMD. The proportion of visually 

impaired eyes remained the same for GA (47.6%, P = 0.40), but dropped to 66.2% (P = 0.026) for CNV after 2006. 

B) Proportion of persons with Late AMD with bilateral visual impairment before and after 2006 (P = 0.016).

* Corresponds with P < 0.05.

Projections of AMD in Europe for 2040

Assuming that the prevalence of early and late AMD will remain stable over time, an increase from 

15.0 million in 2013 to 21.5 million for early AMD can be expected by 2040. The number of people 

with late AMD will almost double during this time period; from 2.7 million in 2013 to 4.8 million in 

2040. 

Assuming a more realistic scenario for which E3 historic data and a decelerating slope were used, we 

found that the prevalence of early AMD will first decrease and then slightly increase between 2013 

and 2040. The model estimated that the number of people with early AMD would remain the same: 

from 15.0 million in 2013 to 14.9 in 2040. This model also displayed that the number of people with 

late AMD in Europe will increase from 2.7 million in 2013 to 3.9 by 2040 (Figure 8).

FIGURE 8 - Predicted number of persons with AMD in years 2013-2040 as a function of two prevalence scenarios
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DISCUSSION

AMD prevalence and its time trends

Our study provides insight in the prevalence of both early and late AMD in Europe. Based on meta-

analyzed data from fourteen population-based cohort studies included in the E3 consortium, the 

overall prevalence of early and late AMD was 13.2% and 3.0%, respectively, in the age-category 70+ 

years. These estimates are comparable to persons from European descent living in other continents.3,25 

Our data showed a trend towards a slightly decreasing prevalence of AMD in the older age categories. 

It is unlikely that this is explained by differential mortality in AMD patients before and after 2006, 

although studies have shown conflicting results on death as a competing risk factor for AMD, and we 

cannot exclude that this plays a role.26-28 The decreasing trend in time has also been observed in the 

Beaver Dam Eye study, indicating that these trends are not confined to Europe.29 Decreasing rates 

have also been observed for other aging disorders such as cardiovascular disease 30-33, and may to 

be related to improved lifestyle among the elderly34-36, for example, the number of smokers declined 

by 30.5% from 1990 to 2010 in Europe37. Taken together, the decline in prevalence suggests that the 

increases in the number of AMD patients may not be as substantial as previous prediction studies 

suggested.38

Gender and Geographic regions

Our data showed no difference in the prevalence of early and late AMD with respect to gender. In 

the oldest age category of 85 years and older, women seemed to have a higher prevalence of late 

AMD, but detailed analysis showed that this was mostly owing to imprecision of the estimate in men, 

caused by a lower number of men in this age group. (Figure 9, available at www.aaojournal.org). This 

has also been observed in other studies.7,39 

As for regional differences, we noticed that the Northern region of Europe showed a slightly higher 

prevalence of early and late AMD. This trend was the result of a higher prevalence of CNV AMD in the 

North. Our findings are in concordance with the results earlier published by the Tromsø Eye Study40, 

but contrast with other studies performed in the North of Europe finding a higher prevalence of GA 

(EUREYE, Reykjavik eye study and Oslo Macular Study).41-43 Considering the larger sample size and 

high response rate of the Tromsø Eye Study compared to the other studies, these findings might 

be more legitimate. No consistent differences were observed for West and South regions of Europe.

Visual consequences 

The proportion of eyes affected by CNV that were visually impaired was reduced after the year 

2006. Unfortunately, our study lacked actual data on interventions for CNV, but it is likely that the 

reduction is attributable to the use of anti-VEGF injections, which were introduced as a therapy for 

CNV in Europe from 2006 onwards.18 This notion is supported by findings from clinical trials44,45 and 

other studies, which show an up to 2-fold decrease in legal blindness due to AMD after 2006.14,15,46,47 

The public campaigns which were initiated after the introduction of anti-VEGF have undoubtedly 

contributed to the reduction of visual loss, as they made elderly more aware of the symptoms and 

stimulated prompt therapy.48,49 
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Projections of AMD in Europe

It is unclear whether the prevalence rates of AMD will decrease even more in the coming years, 

but an increase is not likely to be expected. Therefore, we performed projections of the estimated 

number of AMD affected persons until the year 2040 based on two different scenarios: one based 

on a stable prevalence and one following the trend of declining prevalences. The results of the first 

scenario suggests that the absolute number of persons with late AMD will increase by 2.1 million, a 

1.5 times increase. A Norwegian study predicted, under the assumption of a stable prevalence, the 

same relative increase of affected subjects, with a total of 328,000 cases of late AMD in Scandinavia 

by 2040.5,8 A study in the USA calculated a 2.2 times increase in absolute numbers and estimated a 

total number of affected subjects to be 3.8 million by 2050.5,8 Worldwide projections have shown a 

doubling of late AMD and an increase of 9 million cases by 2040.3 

The second scenario was based on declining rates, and showed a small increase in the number of 

people with Early AMD from 14 million in 2016 to 14.9 million by 2040, and a larger relative increase in 

the number of people with Late AMD, from 2.9 million in 2016 to 4.0 million by 2040. Considering the 

declining rates of smoking and implementation of healthier diets in elderly, the second projection 

may be more legitimate. 

Study Limitations

A limitation to this E3 consortium meta-analysis is the heterogeneity across studies regarding 

study design and inclusion criteria. For example, age at inclusion and method of recruitment 

varied between studies. Although in every study AMD was classified according to the Rotterdam 

Classification, studies differed in AMD grading, especially for pigmentary changes and drusen size. 

Given the heterogeneity, we therefore performed a random effects meta-analysis for both early and 

late AMD. Furthermore, patient management and access to healthcare may have differed between 

study sites, resulting in differences in preventative and treatment options.50,51 

When data collection started in 1990, fundus photography was the golden standard for grading 

AMD. Since 1990, imaging techniques evolved rapidly, greatly improving the diagnosis of AMD 

features with non-invasive techniques such as optical coherence tomography, auto-fluorescence 

and near-infrared photographs. In addition, multimodal imaging better visualizes edema and 

subtle changes resulting from CNV, which may not be so apparent when the patient was treated 

with anti-VEGF therapy.52,53 Although macular edema due to subretinal neovascularization often 

coincides with prominent retinal changes such as hemorrhages or hard exudates, our data may have 

underestimated the true prevalence of CNV.53 

In summary, this study estimates the prevalence of early and late AMD per age category in Europe 

over the past two decades. Prevalence of both these forms remained stable or showed a slight 

decrease. Nevertheless, we observed a significant reduction in the proportion of visually impaired 

eyes due to CNV after 2006. Unfortunately, due to the aging population, the number of people with 

AMD will increase during the next decades, indicating a continuous need to develop comprehensive 

modalities for prevention and treatment of AMD.
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ABSTRACT

Objective To study the frequency and causes of visual impairment in relation to refractive error.

Design Population-based cohort study

Participants: A total of 6,597 participants from Rotterdam Study I (baseline and 4 follow-up 

examinations) and of 2,579 participants from Rotterdam Study II (baseline and 2 follow-up 

examinations), all aged 55+ years, were included.

Methods Participants underwent an extensive ophthalmic examination including best-corrected 

visual acuity and objective refraction, fundus photography, visual field perimetry, and OCT imaging 

of macula and optic disc. We calculated cumulative risks and odds ratios of visual impairment for 

various refractive error categories, determined causes by using all screening information as well as 

medical records.

Main Outcome Measures Unilateral and bilateral low vision (WHO criteria: VA <0.3 and VA ≥0.05; US 

criteria: VA <0.5 and VA ≥0.1) and blindness (WHO criteria: VA <0.05; US criteria: VA<0.1).

Results Cumulative risks of visual impairment ranged from virtually 0 in all refractive error categories 

at age 55 to 9.5% (standard error (se) 0.01) for emmetropia, 15.3% (se 0.06) for high hyperopia to 

33.7% (se 0.08) for high myopia, at age 85. The major causes of visual impairment in highly hyperopic 

persons were age-related macular degeneration (AMD), cataract, and combined causes (each 25%); in 

highly myopic persons the major cause was myopic macular degeneration (38.9%). The major causes 

of visual impairment for the other refractive error categories were AMD and cataract. Compared to 

emmetropes, high myopes had a significantly increased risk of visual impairment; those with ≤-6 D 

& ≥-10 D had a risk of OR 3.4 (95% CI 1.4-8.2) of visual impairment; those with <-10 D had OR 22.0 

(95% CI 9.2-52.6).

Conclusion Of all refractive errors, high myopia has the most severe visual consequences. Irreversible 

macular pathology is the most common cause of visual impairment in this group.
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INTRODUCTION

Refractive errors - both myopia and hyperopia - are very common human eye disorders and leading 

causes of visual impairment worldwide.1-3 Myopia is characterized by an elongation of the eye, and is 

accompanied by structural changes of the retina and choroid.4 These changes can lead to potentially 

blinding complications such as myopic macular degeneration, open-angle glaucoma and retinal 

detachment.5,6 Although all myopic eyes are at risk for complications,4,7,8 highly myopic eyes, i.e., -6 

diopters (D) or worse, are particularly at risk to develop functional blindness at a relatively young 

age. Hyperopia (farsightedness), by contrast, is a condition in which the eye is shortened. For this 

refractive error category, the risks of visual impairment are less well studied, but it is known that 

persons with hyperopia have a higher risk of amblyopia, strabismus and closed-angle glaucoma.9 An 

association with age-related macular degeneration (AMD) has also been described.10

Although numerous studies have addressed population frequencies of low vision and blindness 

none have focused on visual loss as a function of the full spectrum of refractive errors. In addition, 

frequency of causes of blindness and low vision specified per refractive error category have not been 

described until now. Given the current rise in prevalence of this trait11-13, this information can be 

useful for clinicians, patients, and researchers, and will increase awareness of the visual consequences 

of refractive errors.

In this study, we investigated the frequency and causes of blindness and low vision stratified for 

various refractive error categories in 2 independent cohorts of the population-based prospective 

Rotterdam Study.

MATERIAL AND METHODS

Study population

The rationale and design of the Rotterdam Study have been described in detail elsewhere.14 In brief, 

this prospective population-based follow-up study focuses on chronic ophthalmologic, neurologic, 

cardiovascular, and locomotor diseases in middle aged and elderly participants living in Ommoord, 

a city district of Rotterdam, the Netherlands. Baseline data for the ophthalmic part were collected 

between 1991 and 2002 and follow-up examinations were performed at 2-4 years (Figure 1). A 

total of 99% of study participants were from European descent. For this analysis, we included 9,176 

participants from two independent cohorts of the Rotterdam Study. The first is Rotterdam Study I 

(RS-I): 6,597 participants aged 55 years and older. Baseline examinations took place between 1990 

and 1993, and four follow-up examinations were performed in 1993-1995, 1997-1999, 2002-2004, 

and 2009-2011 (Figure 1). The second cohort is Rotterdam Study II (RS-II), which included 2,579 

participants aged 55 years and older. Baseline examinations took place in between 2000 and 2002, 

and two follow-up examinations were performed in 2004-2005 and 2011-2012 (Figure 1). Persons 

with bilateral pseudophakia or aphakia at baseline with no knowledge of prior refractive error were 

excluded (n = 278). From these two cohorts, 9,176 participants with data on refractive error and 

visual acuity at baseline were eligible for the current analysis. The Medical Ethics Committee of the 

Erasmus University had approved the study protocols, and participants had given a written informed 

consent in accordance with the Declaration of Helsinki.
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FIGURE 1 - Participation and ophthalmological measurement from each examination interval of the Rotterdam 

Study

Abbreviations: RS = Rotterdam Study

Ophthalmic data collection

All patients underwent an extensive ophthalmological examination. Visual acuity was measured 

using the Lighthouse Distance Visual Acuity Test, a modified Early Treatment Diabetic Retinopathy 

Study chart.15 To evaluate the best-corrected visual acuity (BCVA), refraction was initially obtained 

after objective autorefraction (Topcon RM-A2000, Topcon Optical Company, Tokyo, Japan), and then 

subjectively adjusted. Screening of visual fields was performed using a modified 76-point supra-

threshold perimetry test (Humprey Visual Field Analyzer, Zeiss, Oberkochen, Germany); visual field 

defects were confirmed by Goldmann perimetry. After pupil dilation, optic nerve head and macular 

area imaging was performed using simultaneous stereoscopic photography (Topcon TRC-SS2, 

Topcon optical Company, Tokyo, Japan), followed by a 35° film fundus camera (Topcon TRV-50VT, 

Topcon Optical Company, Tokyo, Japan). During the last examination rounds, RSI-4, RSI-5 and RSII-2 

respectively, a Topcon digital 35° colour fundus camera (Topcon TRC 50EX with a Sony DXC-950P 

digital camera; 0.44 megapixel) was used.

Low vision and blindness were classified according to the WHO criteria16 and US criteria:

Low Vision: WHO: VA < 0.3 and ≥ 0.05; US: VA < 0.5 and ≥ 0.1

Blindness: WHO: VA < 0.05; US: VA < 0.1
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For participants with bilateral blindness and low vision, three clinical investigators (C.C.W.K, V.J.M.V., 

and K.T.W.) reached consensus on the final determination of the cause of visual impairment after 

reviewing all screening information, fundus transparencies, and medical information provided by 

ophthalmologists.

Statistical analysis

Mean spherical equivalent (SE) was calculated according to the standard formula (SE=spherical value 

+ ½*cylinder). When data from only one eye were available, the SE of this eye was used. Mean SE was 

categorized into high myopia (≤ -6 diopters (D)), moderate myopia (>-6D & ≤-3D), low myopia (<-3D 

& ≤-0.75D), emmetropia (>-0.75D & <0.75D), low hyperopia (≥0.75D & <3D), medium hyperopia (≥ 

3D & <6D), and high hyperopia (≥ 6D), using previously defined criteria.17 High myopia and high 

hyperopia were further classified as high myopia <-10 D and ≤-6 D & ≥-10 D and high hyperopia 

>10 D and ≥6 & ≤10 D. Visual acuity at last visit was categorized into normal vision, low vision, and 

blindness according to WHO and US criteria as defined above. For bilateral visual impairment, BCVA 

was used. Unilateral visual impairment was defined as visual impairment in only one eye.

We calculated the number of cases with bilateral and unilateral blindness and low vision as a 

percentage of the total number of all cases with blindness and low vision at the endpoint of the 

study per refractive error category.

Cumulative risks of bilateral visual impairment were estimated per refractive error category using 

Kaplan Meier product limit analysis. We assigned the age at diagnosis of blindness or low vision 

as the mean between the examination at which this endpoint was first observed and the previous 

examination. For participants who did not develop the endpoint, we used age at last examination 

for censoring. Participants who died or were lost to follow-up were counted at the time of the last 

examination. All participants aged 85+ years were censored at age 85 years to maintain unbiased 

estimates. Cumulative risks per refractive error category were compared with the log-rank test of 

equality (Mantel-Cox) using emmetropia as the reference group.

Causes of bilateral blindness and low vision (according to the WHO criteria) were categorized, and 

frequencies of causes were calculated per refractive error category. We calculated mean age at 

diagnosis of bilateral visual impairment per refractive error category, and calculated mean spherical 

equivalent per refractive error category, stratified by normal vision, low vision and blindness. 

Statistical differences at nominal P-value <0.05 between refractive error categories for age at 

diagnosis and between visual acuity categories for mean SE were calculated using Student’s T test. 

The risk of blindness and low vision (reference normal vision) for persons with various refractive error 

categories (reference emmetropia) was assessed using logistic regression analysis with blindness 

and low vision as a combined outcome, correcting for age and sex. We used SPSS version 20.0.0 (SPSS 

Inc.) for all analyses.

RESULTS

General characteristics of the 9,176 study participants are presented in Table 1. At baseline, we 

identified 98 prevalent cases (1.1%) with bilateral low vision and 29 cases (0.3%) with bilateral 

blindness (WHO criteria). After a mean follow-up time of 9.6±6.1 years, respectively 62 and 26 persons 

developed incident bilateral low vision and blindness. Subjects in RS-I were generally younger (mean 

age at inclusion 69.0 versus 64.1 years) and were less myopic (mean SE 0.84 vs. 0.47 D) than those in 
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RS-II, due to a cohort effect described in our previous work.17 The characteristics of all cases who had 

received a diagnosis of bilateral low vision or blindness by the end of the study can be found in Table 

2 (WHO-criteria) and Table 3 (US-criteria; available at http://aaojournal.org).

The distribution of bilateral and unilateral blindness and low vision (WHO criteria) per refractive error 

category is shown in Figure 2. The high myopia group showed the highest percentage of bilateral 

blindness (9.6%) and low vision (25.0%). Persons from the high hyperopia group had the highest 

proportion of unilateral blind eyes (39.1%).

TABLE 1 - Characteristics of the study population

  Rotterdam Study I Rotterdam Study II Total

N at baseline 6597 2579 9176

Follow-up time, mean ± sd (yrs) 9.8 ± 6.0 8.9 ± 2.9 9.6 ± 6.1

Baseline age, mean ± sd (yrs) 69.0 ± 9.0 64.1 ± 7.4 67.6 ± 8.8

Sex, % men 41.0 45.0 42.0

Visual acuity at last measurement - WHO criteria

Bilaterally visually impaired subjects 2.2 0.5 1.7

Bilaterally blind subjects 0.8 0.1 0.6

Unilaterally visually impaired subjects 6.1 3.8 5.5

Unilaterally blind subjects 3.4 2.1 3.0

Visual acuity at last measurement - US criteria

Bilaterally visually impaired subjects 6.6 1.8 5.2

Bilaterally blind subjects 1.1 0.1 0.8

Unilaterally visually impaired subjects 12.5 4.8 10.3

Unilaterally blind subjects 3.4 2.2 3.1

Refractive error

Spherical equivalent, mean ± sd (D) 0.84 ± 2.54 0.47 ± 2.49 0.74 ± 2.53

High myopia ≤-6D 1.8 1.8 1.8

Medium myopia >-6D & ≤-3D 5.2 7.3 5.8

Low myopia -3D & ≤-0.75D 9.5 12.8 10.4

Emmetropia >-0.75D & <0.75D 25.4 26.9 25.8

Low hyperopia ≥0.75D & <3D 44.4 41.1 43.4

Medium hyperopia ≥3D & <6D 12.3 9.2 11.4

High hyperopia ≥6D 1.5 1.0 1.3

Numbers displayed are percentages, unless stated otherwise.

Abbreviations:; D = diopters, sd = standard deviation, WHO = World Health Organization
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TABLE 2 - Characteristics of subjects with bilateral blindness, low vision and normal vision (WHO criteria)

 

 

Bilaterally blind 

subjects

Bilaterally visually 

impaired subjects

Subjects with bilateral 

visual acuity ≥ 0.3

N = 55 N = 160 N = 8961

Age of onset, mean ± sd (yrs) 78.1 ± 11.3 79.7 ± 10.1 -

Range age of onset 55.4-96.3 56.4-106.2 -

Sex, % men 31.0 53.0 51.0

Spherical equivalent, mean ± sd (D) -0.05 ± 5.78 0.09 ± 4.03 0.75 ± 2.45

Range spherical equivalent -19.13; 12.25 -15.31; 8.50 -19.13; 15.13

High myopia ≤-6D, % 9.1 8.1 1.7

Moderate myopia >-6D & ≤-3D, % 5.5 7.5 5.7

Low myopia -3D & ≤-0.75D, % 10.9 10.6 10.4

Emmetropia >-0.75D & <0.75D, % 16.4 19.4 26.0

Low hyperopia ≥0.75D & <3D, % 38.2 38.1 43.6

Moderate hyperopia ≥3D & <6D,% 12.7 13.8 11.4

High hyperopia ≥6D, % 7.3 2.5 1.3

Abbreviations: D = diopters, sd = standard deviation;

FIGURE 2 - Bar graph showing the distribution of bilateral and unilateral blindness and low vision (World Health 

Organization criteria) per refractive error category. The number of cases with bilateral and unilateral blindness 

and low vision is shown as a percentage of the total number of prevalent and incident cases with blindness and 

low vision per refractive error category. For data of visual impairment as a percentage of the entire population, 

see Table 1.

Abbreviations: D = diopters.

Kaplan Meier curves showing cumulative risk of visual impairment for high myopia, emmetropia 

and high hyperopia appear in Figure 3. Cumulative risks ranged from virtually 0 in all refractive 

error categories at age 55 to 9.5% (standard error (se) 0.01) for emmetropia, 15.3% (se 0.06) for high 

hyperopia to 33.7% (se 0.08) for high myopia, at age 85. Risks for high myopia started to increase 

gradually before age 60; for high hyperopia between 60 and 70 years of age, whereas emmetropia 
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showed a more steady increase in risk from the age of 70. Cumulative risks for persons with low 

to moderate myopia and hyperopia were not significantly different from persons with emmetropia 

(P 0.09; P 0.78). Kaplan Meier curves for US criteria can be found in Figure 4 (available at http://

aaojournal.org). Cumulative risks ranged from virtually 0 in all refractive error categories at age 55 to 

28.9% (standard error (se) 0.03) for emmetropia, 41.5% (se 0.08) for high hyperopia to 59.2% (se 0.08) 

for high myopia, at age 85.

FIGURE 3 - Cumulative risk of bilateral visual impairment (WHO criteria) stratified for high myopia, emmetropia 

and high hyperopia. The X-axis represents the age at diagnosis for all cases with blindness or low vision at the 

end point of the study and age at last examination for non-cases; the Y-axis represents the cumulative risk for 

persons with visual impairment. The number of persons at risk at each decade per refractive error category is 

presented below.

Abbreviations: D = Diopters.

The causes of bilateral visual impairment according to WHO criteria are provided in Figure 5. For 

persons with emmetropia, low to moderate myopia, and low to moderate hyperopia, AMD was the 

major cause of visual impairment. The most important cause of visual impairment in high myopic 

persons was myopic macular degeneration (38.9%), followed by combined mechanisms (33.3, 

including myopic macular degeneration, cataract, and maculopathy) and cataract (16.7%). In highly 
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hyperopic persons, the major causes of visual impairment were AMD (25%), cataract (25.0%), and 

combined causes (25%, including amblyopia, corneal dystrophy, cataract, maculopathy, age-related 

macular degeneration).

C

B

A



44 Chapter 2.2

FIGURE 5 - Causes of bilateral low vision and blindness (WHO criteria) stratified by refractive error category. The 

X-axis represents the percentage of visual impairment explained by the different causes mentioned on the 

Y-axis stratified by subjects with high myopia (A), low & moderate myopia (B), emmetropia (C), low & moderate 

hyperopia (D) and high hyperopia (E).

Abbreviations: D = diopters, NA = not applicable, WHO = World health organization.

The age at diagnosis of visual impairment for persons with high myopia (75.4±13.7 yrs) and 

high hyperopia (75.4±10.0 yrs) was slightly, albeit non significantly, lower than for persons with 

emmetropia (80.3±11.0 yrs; P =0.152; and P = 0.250, respectively).

Boxplots of the SE distribution among visually impaired participants with high myopia and high 

hyperopia are provided in Figure 6. Among the high myopes, persons with bilateral blindness (SE=-

15.25 ± 5.23 D; P = 0.034) and low vision (SE=-10.91 ± 2.57 D, P = 0.0036) had a significantly lower 

SE (i.e. more myopia)than persons with normal vision (SE=-8.25 ± 2.59 D). In the other refractive 

error groups, no statistical SE differences were found between the visual acuity categories (data not 

shown). The risk of blindness or low vision for high myopes versus emmetropes was OR 3.4 (95% CI 

1.4-8.2, P<0.001) for those with SE ≤-6 D & ≥-10 D, and OR 22.0 (95% CI 9.2-52.6, P 0.01) for those with 

SE <-10 D (Figure 7).

E

D
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FIGURE 6 - Distribution of spherical equivalent in relation to bilateral visual impairment (WHO criteria) in 

participants with high myopia (A) and high hyperopia (B). Boxplots for the distribution of spherical equivalent 

stratified by bilateral blindness, bilateral low vision and normal vision (based on WHO criteria) for all subjects 

with high myopia SE ≤-6D (A) and high hyperopia ≥ 6 D (B).

Abbreviations: D= diopters, NS = not significant, WHO= World Health Organisation

A

B
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FIGURE 7 - Risk of bilateral blindness and low vision (WHO criteria) for high myopes. Odds ratios with 95% 

confidence intervals for blindness and low vision (reference normal vision) for persons with high myopia with 

SE ≤-6 D & ≥-10 D or SE <-10 D (reference emmetropia) are shown.

Abbreviations: CI = Confidence Interval, D = Diopters, OR = Odds Ratio, R = reference, WHO = World Health Organisation;

*, statistically significant OR (P < 0.05) compared to the reference group

DISCUSSION

In this population-based longitudinal study, we found that persons with high myopia (SE≤-6D) 

and high hyperopia (SE≥6D) are at a considerable risk of visual impairment. Blindness or low vision 

occurred in one third of high myopes, mainly caused by myopic macular degeneration. The blind and 

visually impaired persons within this group had a higher degree of myopia than the ones with normal 

vision; the risk of visual impairment was 22x increased for those with refractive errors of -10 D or 

more when compared to emmetropes, but also 6x higher than those with refractive errors between 

-6 and -10 D. The onset of visual impairment appeared to occur at a younger age; cumulative risks 

of visual impairment rose at least 10 years earlier for high myopia (before the age of 60) than for 

emmetropia (from the age of 70). For high hyperopia, we found that 15% of the persons were visually 

impaired. Causes of visual impairment for this refractive error showed more variation, and included 

cataract, AMD, and combined mechanisms.

This is the first report on refractive error specific risks and causes of blindness and low vision. 

Strengths of this study are the investigation of the full spectrum of refractive errors, the large sample 

size, and the lengthy follow-up time. In addition, our ophthalmic examination was extensive, which 

enabled an accurate determination of the cause of visual impairment. Our study also had limitations. 

Despite the large sample size, subgroup numbers were relatively small, jeopardizing precision of 

the risk estimates. Also, we focused on causes of visual impairment in persons with bilateral low 

vision, and did not study those with unilateral visual impairment. Therefore, we may have missed 

refractive error specific causes of visual impairment that are more likely to occur unilaterally, such 
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as rhegmatogenous retinal detachment18, and closed-angle glaucoma19 in (high) myopes and 

amblyopia in (high) hyperopes. Lastly, selective non-participation of disabled persons may have 

caused an underestimation of the frequencies of blindness and visual impairment.

Our findings are in line with results from previous studies that showed a highly increased risk for high 

myopes (SE≤-6D).8,20 Except for one person with moderate myopia, all persons with myopic macular 

degeneration were highly myopic. Those with extreme refractive error values of ≥ -10 D had the 

highest risk of visual impairment. We could not confirm the previously described mildly increased 

risk of visual impairment for persons with low to moderate myopia.8,20

Myopia is a growing public health problem since the prevalence is rapidly increasing, particularly 

in East Asia.11-13 With time, this trend is predicted to occur in other regions as well, and the increase 

in myopia and high myopia prevalence will result in a higher frequency of complications. Atropine 

eyedrops can currently be used as a therapy in children to slow the progression of myopia and 

decrease the final adult value of myopic refractive error.21 Our data underscore the objective of this 

therapy, because realisation of a lower refractive error will lower the risk of visual impairment later 

in life.22

It was previously shown that clinically significant pathological changes can be noted in highly myopic 

patients who are middle-aged or even younger.23,24 Our mean age at diagnosis of visual impairment 

is likely to be overestimated, since we included persons over age 55 years with visual impairment at 

baseline; baseline age was 69 years for RS-I and 64.1 years for RS-II. We did not have information on 

the actual age of onset of visual impairment occurring before this age.

The frequency of visual impairment in the high hyperopia group was relatively high. The number of 

cases with blindness or low vision in this group was very small (n = 8). Also, the proportion of high 

hyperopes in our older study sample was quite large, so these data are not necessarily applicable to 

the general population. Previous research has mainly focused on high myopia rather than on high 

hyperopia, but our results at least show that high hyperopia should be subject to further studies as 

well. Cataract was an important cause of visual impairment in all refractive error categories. This may 

be an overestimation of the current situation, since the majority of the data had been collected in 

the 1990’s, and since then cataract surgery has become a more easily accessible and safer procedure. 

Several studies showed an increased incidence of nuclear cataract and subcapsular posterior cataract 

in high myopes.25 We considered whether the exclusion of pseudophakic and aphakic persons might 

have introduced a selection bias and an underestimation of the risks of visual impairment in high 

myopic persons in our study. This does not seem to be the case, since only 2 out of 287 excluded 

participants (0.7%) with pseudophakia or aphakia were blind or visually impaired due to myopic 

macular degeneration diagnosed on the fundus photograph.

In summary, our data indicate that risks and causes of visual impairment vary with refractive error. 

The risks for high myopes are by far the highest with more than 1 in 3 persons with high myopia 

developing bilateral blindness or low vision. This large health risk requires public awareness and a 

focus to initiate strategies to reduce this burden in those at risk of myopia.
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ABSTRACT

Purpose Reticular pseudodrusen (RPD) are considered to be a distinct feature in age-related macular 

degeneration (AMD). Population studies have studied the epidemiology of RPD using standard color 

fundus photographs (CFP). However, recent studies have shown that RPD are better imaged using 

near-infrared (NIR) imaging. We studied the epidemiology of RPD in a large population-based study 

using NIR and CFP.

Methods Participants aged 65+ years from the Rotterdam Study underwent ophthalmological 

examination including NIR and CFP. Both images were graded for the presence of RPD and soft 

indistinct drusen (SID). Associations with demographic and environmental factors, 26 genetic 

variants, and total genetic risk score were analyzed using logistic regression analysis.

Results RPD were detected in 137 (4.9%) of 2,774 study participants; of these, 92.7% were detected 

with NIR imaging and 38% on CFP. The majority of eyes with RPD showed presence of SID, while 

other drusen types coincided less frequently. RPD were significantly associated with age (Odds 

Ratio (OR) 1.21 (95% Confidence Interval (CI) 1.17-1.24)) and female sex (OR 2.10 (95% CI 1.41-3.13)). 

Environmental factors did not show a significant association with RPD. Major AMD risk variants were 

significantly associated with RPD and SID, however, ARMS2, C3 and VEGFA were more associated with 

RPD (RPD vs SID P<0.05). Total genetic risk score did not differ significantly (P=0.88).

Conclusion Detection of RPD was better with NIR imaging than on CFP in a population-based 

setting. Presence of RPD often coincided with presence of SID, however, they showed quantitative 

differences in genetic risk profile.
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INTRODUCTION

Reticular pseudodrusen (RPD), also known as subretinal drusenoid deposits (SDD), are depositions 

located in the subretinal space between the outer segments of the photoreceptors and the retinal 

pigment epithelium (RPE).1-3 RPD carry a much higher risk of developing end-stage AMD than other 

AMD lesions, such as soft indistinct drusen (SID).4-7 RPD have first been described in 1990 and it was 

already then pointed out that RPD are better visualized using blue reflectance photography than 

regular color fundus photographs (CFP).8 RPD can also be detected using other imaging modalities. 

A comparative study between various image modalities showed that near-infrared imaging is one of 

the image modalities that has the highest sensitivity for RPD detection9, and that sensitivity of RPD 

detected only on CFP can be as low as 36%.10

Several risk factors have been identified for RPD, which include age, smoking, higher body mass 

index, female predominance, and genetic risk factors including CFH(Y402H) and ARMS2(A69S).4,6,7,11-13 

Previous studies have shown that RPD were present in 60-90% of patients with late AMD.14-16 Boddu 

et al. studied risk profiles of RPD versus large soft drusen in a small clinic-based study.13 These 

researchers could not find many significant differences between these patient groups, however, 

individuals with RPD were older and more often female.

Since the population-based studies on RPD have based their grading solely on CFP, and the clinic-

based studies were carried out only in small groups, risk estimates are likely to be imprecise.11 

Improved detection of RPD in a large population-based study may provide more accurate prevalence 

figures, and could enhance risk profiling for RPD.

In this study, we aimed to investigate the epidemiology of RPD using CFP and NIR images and 

compare this with SID in a large, unselected population. We have chosen to use the term RPD instead 

of SDD, since this is more commonly used in clinical-based papers. However, where RPD is written 

SDD can be read.

METHODS

Study population

The Rotterdam Study is a prospective population-based cohort study that focuses on chronic 

ophthalmologic neurologic, cardiovascular, and locomotor diseases in middle aged and elderly 

subjects living in Ommoord, a suburb of Rotterdam. The aims and design of the Rotterdam study 

have been described elaborately elsewhere.17 In brief, the study started in 1989 and since then 

every 2-4 years follow-up examinations were performed. During these follow-up examinations new 

techniques and devices were implied, such as the Heidelberg Retina Angiograph 2, a scanning laser 

ophthalmoscope (SLO). The Rotterdam Study has been approved by the Medical Ethics Committee of 

the Erasmus MC and by the Ministry of Health, Welfare and Sport of the Netherlands, implementing 

the “Wet Bevolkingsonderzoek: ERGO (Population Studies Act: Rotterdam Study)”. All participants 

provided written informed consent to participate in the study and to obtain information from their 

treating physicians.

For the current cross-sectional analysis, we included 3,108 participants from the last examination 

round from two independent cohorts of the Rotterdam Study; 1,542 participants from the Rotterdam 

Study I (RS-I), aged 70 years and older and 1,566 participants from the Rotterdam Study II (RS-II), aged 

65 years and older. Participants were excluded from the analyses if they had ungradable CFP (N=17) 
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or ungradable NIR images (N=68). Since the Heidelberg Retina Angiograph 2 was operational a few 

weeks after the start of the examination round an additional 266 participants were excluded from 

the study due to absence of NIR images. From these two cohorts, 2,774 participants with gradable 

CFP and gradable NIR imaging were eligible for analysis.

Grading of AMD, SID and RPD

All eligible participants underwent 35° digital CFP of the macula (Topcon TRC-50EX, Topcon Optical 

Company, Tokyo, Japan with a Sony DXC-950P digital camera; 0.44 megapixel, Sony Corporation, 

Tokyo, Japan) after pharmacologic mydriasis. Next, NIR images, (λ=820 nm) 30°x30° of the macula, 

were taken with a Heidelberg Retina Angiograph 2 (Heidelberg engineering, Heidelberg, Germany).

CFP were graded for presence of all AMD-related features according to the Wisconsin Age-Related 

Maculopathy Grading18 and Rotterdam classification (for definition see Table 1), a modified 

International Classification System, using the standard grading grid for AMD (central circle 1000 μm, 

inner circle 3000μm and outer circle 6000μm in diameter).19,20 In short, the Rotterdam classification 

consists of 5 grades with grade 0 defined as no AMD, grade 1 as preliminary early AMD, grade 2 and 

3 together as Early AMD and grade 4 as Late AMD. SID were defined as yellow lesions with indistinct 

borders and ≥ 125μm in size. These type of soft drusen are associated with a higher risk of developing 

advanced AMD compared to soft distinct drusen.20 RPD were defined as indistinct yellowish lesions 

interlacing in networks125-250μm in width.18,19

NIR images of the macula were graded based on the presence of RPD, detectable as groups of hypo-

reflectant lesions against a mildly hyper-reflectant background in regular patterns.9,10,21,22 Since SID 

and other drusen types are less visible on NIR imaging, these lesions were not graded on NIR, only 

on CFP.

On CFP, RPD and/or SID were graded in and outside the ETDRS grading grid . On NIR, RPD was graded 

if present on the image, this equals grading in and outside the ETDRS grid on CFP.

All images were graded by trained graders, while being masked for the grading of the other image 

modality, under the supervision of senior retinal specialists (P.T.V.M.d.J., J.R.V., C.C.W.K.). Between 

grader comparisons were assessed. For drusen grading on CFP, the weighted κ values ranged from 

0.60 for hard drusen to 0.82 for soft distinct drusen. For RPD grading on CFP, the κ value was 0.72. For 

NIR imaging, this κ value was 0.84. The eyes of each participant were graded and classified separately, 

and the eye with the more severe grade was used to classify the person.

Genotyping and selection of genetic variables

Genomic DNA was extracted from peripheral blood leukocytes. All study participants in the RS-I were 

genotyped with the Illumina Infinium II HumanHap550 array or Taqman assays (Applied Biosystems, 

Foster City, CA). Study participants from the RS-II were genotyped with the Illumina Human610-

Quad array. HapMap CEU data (release #22) was used for imputation. Genetic variables associated 

with AMD were selected based on previous publications.23,24

Risk score Three Continent AMD Consortium prediction model

The Three Continent AMD Consortium (3CC) developed a validated prediction model including a 

total risk score based on 31 variables; 26 genetic variants associated with AMD, age, sex, smoking, 

BMI, and AMD phenotype.23 The total risk score was based on the sum of the beta coefficients from a 
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Cox proportional hazard analysis, which included all the selected variables. In this analysis we used 

the total genetic risk score, which is a variant of the total risk score and has been calculated using 

only the beta coefficients from the genetic variables of the 3CC prediction model.

Assessment of nongenetic variables

Information on the history of diabetes mellitus, education level and cigarette smoking were derived 

from computerized questionnaires administered during home interviews. Smoking was categorized 

in never, past and current smokers. Blood pressure, systolic and diastolic, was calculated as the 

average of two consecutive measurements, using a random-zero mercury sphygmomanometer. 

Hypertension was defined as having a systolic blood pressure ≥ 140 mmHg or a diastolic blood 

pressure ≥ 90mmHg or using anti-hypertensive medication at baseline. Cholesterol, high density 

lipoprotein (HDL) and triglycerides were measured at baseline by the Central Clinical Chemical 

Laboratory of the Erasmus University Medical Center. A subgroup of measurements was carried out 

in the laboratory of the Department of Epidemiology & Biostatistics, Erasmus University Medical 

Center. Body-mass index (BMI) was calculated as weight kilograms divided by height squared in 

meters. Waist circumference and hip circumference were measured in centimeters.

Statistical analysis

Prevalence of RPD as a function of age was calculated per image modality. The prevalence of Early 

AMD based on CFP diagnosis of AMD lesions was compared with the prevalence of Early AMD based 

on both NIR and CFP grading.

We investigated the association with demographic, genetic and environmental variables using 

various outcomes: soft indistinct drusen versus no drusen; RPD versus no drusen, and RPD versus soft 

indistinct drusen. Outcomes were binary and the association was assessed with logistic regression 

analysis. Total genetic risk scores were calculated for each individual using only the genetic variables 

from the 3CC prediction model. Risk scores were grouped and stratified for RPD, SID and no RPD/SID; 

strata were compared using Chi-Square statistic test. Analyses investigating concurrence of drusen 

types were eye-based, all other analyses were person-based, which were eye based. All statistical 

analyses were performed using SPSS version 21 (SPSS IBM, New York, U.S.A).

RESULTS

RPD were detected in 137 (4.9%) of 2,774 study participants, of which 52 (38.0%) were identified on 

CFP and 127 (92.7%) on NIR imaging (numbers do not add up to 100% due to overlap). RPD were 

mostly present from age 70 years onwards (Figure 1) and were bilaterally present in 69.3%. Only one 

person had been diagnosed with RPD at the age of 64.0 years, and RPD were visible on CFP as well as 

on NIR imaging. Frequency of RPD increased per age category, however, the steep rise in those aged 

90+ years was most pronounced when RPD were diagnosed on NIR imaging.

In the Rotterdam classification system, RPD are part of the criteria for staging. To investigate how 

much the improved detection of RPD by NIR imaging influenced AMD prevalence, we classified 

each person using the two gradings, one solely based on CFP and the other based on CFP and NIR 

imaging. Inclusion of the NIR imaging increased the prevalence of Early AMD (stage 2 & 3) from 19% 

to 20.5% (Table 1).



56 Chapter 3.1

0.
0%

5.
0%

10
.0

%

15
.0

%

20
.0

%

25
.0

%

30
.0

%

35
.0

%

40
.0

%

45
.0

%

65
-7

0
70

-7
5

75
-8

0
80

-8
5

85
-9

0
90

+ 
yr

s

RP
D 

CF
P

RP
D 

N
IR

RP
D 

CF
P 

+ 
N

IR

FI
GU

RE
 1 

- R
e

ti
cu

la
r 

p
se

u
d

o
d

ru
se

n
 d

e
te

ct
io

n
 w

it
h

 c
o

lo
r 

fu
n

d
u

s 
p

h
o

to
g

ra
p

h
s 

a
n

d
 n

e
a

r-
in

fr
a

re
d

 im
a

g
in

g
. F

re
q

u
e

n
cy

 o
f 

re
ti

cu
la

r 
p

se
u

d
o

d
ru

se
n

 w
a

s 
p

lo
tt

e
d

 p
e

r 
a

g
e

 c
a

te
g

o
ry

 

fo
r 

th
e

 d
iff

e
re

n
t 

im
a

g
in

g
 t

yp
e

s:
 c

o
lo

r 
fu

n
d

u
s 

p
h

o
to

g
ra

p
h

s,
 n

e
a

r-
in

fr
a

re
d

 i
m

a
g

in
g

 a
n

d
 b

o
th

 i
m

a
g

in
g

 t
yp

e
s 

co
m

b
in

e
d

. 
X

-a
xi

s:
 a

g
e

 c
at

e
g

o
ry

 i
n

 y
e

a
rs

, 
y-

a
xi

s:
 p

e
rc

e
n

ta
g

e
s 

A
b

b
re

v
ia

ti
o

n
s:

 C
F

P
 =

 C
o

lo
r 

fu
n

d
u

s 
p

h
o

to
g

ra
p

h
s,

 N
IR

 =
 n

e
a

r-
in

fr
a

re
d

 im
a

g
in

g
, y

rs
 =

 y
e

a
rs



57Epidemiology of RPD

3

TABLE 1 - Prevalence per AMD severity grade according to the Rotterdam Classification based on color fundus 

photographs only versus color fundus photographs and near-infrared imaging 

Grade  Definition 

Grading CFP

N=2774

Grading CFP + NIR

N=2774

0 No signs of AMD at all OR hard drusen (< 63 μm) only 42.70% 42.30%

1 Soft distinct drusen (≥ 63 μm) only OR pigmentary abnormalities only 36.10% 35.00%

2 Soft indictinct drusen (≥ 125 μm) / reticular drusen only OR soft distinct 

drusen (≥ 63 μm) AND pigmentary abnormalities

13.60% 14.50%

3 Soft indictinct (≥ 125 μm) / reticular drusen AND pigmentary abnormalities 5.40% 6.00%

4 Atrophic, neovascular or mixed AMD 2.20% 2.20%

Abbreviations: AMD = age-related macular degeneration, CFP = color fundus photographs, NIR = near-infrared imaging

We then investigated the number and type of other drusen present in eyes with RPD (N=232) (Figure 2 

and Supplementary Figure 1). We performed this analysis for drusen within and outside the grid. The 

majority of eyes with RPD had SID, both within and outside the grid. These eyes also presented with 

other types of drusen, but they were less frequent compared to SID. Of eyes with RPD, only 14 eyes 

(6.0% of eyes with RPD) did not have any type of soft drusen, and 9 eyes (3.9% of eyes with RPD) had 

no other type of drusen at all. Of these, the contralateral eye of 2 persons had drusen. Only 5 persons 

with RPD had no drusen at all, not even in the contralateral eye.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Within grid Outside grid

No drusen

Hard drusen

Soft C1 drusen

Soft distinct drusen

Soft indistinct drusen

FIGURE 2 - Frequency of other drusen types in eyes with reticular pseudodrusen. Other drusen types coinciding 

with reticular pseudodrusen. Grading based on most severe drusen type, beside reticular pseudodrusen, on 

color fundus photographs, according to the Wisconscin Age-Related Maculopathy Grading. Frequencies of 

other drusen types were stratified for drusen presence within and outside the grading grid.
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Table 2 shows the frequency of characteristics between persons with SID, RPD, and those without 

SID or RPD. Table 3 shows the associations of these characteristics with SID only, with RPD, and 

with RPD versus SID. The odds ratio represents the risk for a certain parameter on a drusen type 

(RPD or SID) in reference to the other drusen type or to absence of RPD/SID. Both SID and RPD were 

associated with age (OR 1.09 (95% CI 1.06-1.11) and OR 1.21 (95% CI 1.17-1.24)), respectively. For SID 

there was no association with sex (OR 1.02 (95% CI 0.77-1.34)) while occurrence of RPD was strongly 

associated with female sex (OR 2.10 (95% CI 1.41-3.13)). HDL cholesterol (OR 1.83 (95% CI 1.30-2.59)) 

and triglycerides (OR 0.66 (95% CI 0.51-0.86)) in serum were both significantly associated with SID, 

but not with RPD. No other demographic or environmental risk factors were significantly associated 

with SID or RPD. Table 4 shows the association of RPD/SID with genetic factors. Genetic variants in 

the CFH gene (rs1061170, rs12144939, rs800292), the ARMS2 gene (rs10490924) and the C2/CFB gene 

(rs641153) were significantly associated with both drusen types. A variant in the IER3/DDR1 gene 

(OR 2.54 [95% CI 1.32-4.86] for rs3130783, GG vs AA) was only associated with SID, while a variant 

in the C3 gene (OR 1.61 (95% CI 1.08-2.40)] for rs22130199, CG vs CC) was only associated with RPD. 

Two variants were significantly more associated with RPD than SID. These included the variant in 

the ARMS2 gene (OR 2.48 (95% CI 1.001-6.17) for rs10490924, TT vs GG) and a variant in the VEGFA 

gene (OR 2.00 (95% CI 1.05-3.8) for rs943080, CT vs CC). Genetic risk score frequencies did not differ 

significantly between SID and RPD (P = 0.88, Chi-Square test) (Supplementary Table 1).

TABLE 2 - Frequency of clinical parameters stratified for drusen type 

Variables

No RPD/SID

N=2416

SID

N=221

RPD

N=137

Age, yrs (sd) 75.0 (5.6) 77.8 (6.2) 82.1 (6.2)

Sex, % females 54.6 54.8 71.5

Education, %      

 < 12 years 26.8 23.3 29.1

 ≥ 12 years 73.2 76.7 70.9

Smoking, %      

 never 31.2 32.1 37

 past 57 57 48.9

 current 11.9 10.9 14.1

Diabetes Mellitus, % 13 12.4 13

Hypertension, % 86 86.8 89.7

Systolic bloodpressure, mmHg (sd) 152.3 (21.4) 154.0 (21.4) 154.0 (23.7)

Diastolic bloodpressure, mmHg (sd) 85.2 (11.0) 85.9 (11.1) 85.3 (13.3)

Cholesterol, mmol/l (sd) 5.4 (1.1) 5.4 (0.9) 5.3 (1.1)

HDL cholesterol, mmol/l (sd) 1.5 (0.4) 1.6 (0.4) 1.5 (0.4)

Triglycerides, mmol/l (sd) 1.4 (0.7) 1.3 (0.6) 1.4 (0.8)

BMI, kg/m2 27.5 (4.1) 27.1 (4.1) 27.2 (3.9)

Waist circumference, cm (sd) 93.7 (12.0) 92.0 (11.7) 91.5 (11.0)

Hip circumference, cm (sd) 102.9 (8.2) 102.6 (9.3) 102.6 (8.7)

Abbreviations: BMI= body mass index, HDL = high density lipoprotein, LDL= low density lipoprotein, RPD = reticular 

pseudodrusen, sd = standard deviation, SID = soft indistinct drusen
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TABLE 3 - Comparison of clinical parameters among drusen types 

Variables

SID vs no RPD/SID

OR (95% CI)

age and sex adjusted

RPD vs no RPD/SID

OR (95% CI)

age and sex adjusted

RPD vs SID

OR (95% CI)

age and sex adjusted

Age* 1.09 (1.06-1.11) 1.21 (1.17-1.24) 1.12 (1.07-1.16)

Sex **      

 male 1 1 1

 female 1.02 (0.77-1.34) 2.10 (1.41-3.13) 2.16 (1.34-3.49)

Education      

 < 12 years 1 1 1

 ≥ 12 years 1.31 (0.93-1.83) 1.24 (0.82-1.89) 0.90 (0.53-1.52)

Smoking      

 never 1 1 1

 past 0.98 (0.70-1.35) 1.06 (0.69-1.62) 0.97 (0.57-1.65)

 current 0.98 (0.60-1.62) 1.77 (0.97-3.23) 1.54 (0.71-3.32)

Diabetes Mellitus      

 No 1 1 1

 Yes 0.96 (0.59-1.55) 1.05 (0.57-1.94) 1.41 (0.64-3.09)

Hypertension      

 No 1 1 1

 Yes 0.88 (0.58-1.33) 0.89 (0.49-1.61) 0.91 (0.44-1.89)

Cholesterol, mmol/l 1.06 (0.93-1.21) 0.89 (0.75-1.06) 0.78 (0.61-1.00)

HDL cholesterol, mmol/l 1.83 (1.30-2.59) 1.28 (0.80-2.05) 0.68 (0.39-1.20)

Triglycerides, mmol/l 0.66 (0.51-0.86) 0.95 (0.70-1.28) 1.39 (0.97-1.98)

BMI      

 ≤ 25 kg/m2 1 1 1

 > 25 kg/m2 0.83 (0.61-1.11) 1.13 (0.75-1.70) 1.50 (0.90-2.48)

Waist circumference      

 ≤ 90 cm 1 1 1

 > 90 cm 0.82 (0.61-1.11) 1.21 (0.82-1.80) 1.51 (0.93-2.47)

Hip circumference      

 ≤ 100 cm 1 1 1

 > 100 cm 0.87 (0.65-1.15) 1.18 (0.81-1.72) 1.29 (0.81-2.06)

Abbreviations: BMI = body mass index, CI = confidence interval, HDL = high density lipoprotein, LDL = low density lipoprotein

OR = Odds' Ratio, RPD = reticular pseudodrusen, SID = soft indistinct drusen

* Adjusted for sex 

** Adjusted for age
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TABLE 4 - Genetic risks among drusen types

Genes

SID vs no RPD/SID

OR (95% CI)

age and sex adjusted

RPD vs no RPD/SID

OR (95% CI)

age and sex adjusted

RPD vs SID

OR (95% CI)

age and sex adjusted

CFH (Y402H) rs1061170      

 TT 1 1 1

 CT 1.65 (1.17-2.34) 1.45 (0.95-2.23) 0.91 (0.52-1.58)

 CC 3.84 (2.50-5.90) 2.78 (1.57-4.93) 0.83 (0.42-1.66)

CFH rs12144939      

GG 1 1 1

GT/TT 0.34 (0.23-0.51) 0.28 (0.17-0.47) 0.89 (0.47-1.71)

CFH rs800292      

GG 1 1 1

GA 0.54 (0.39-0.76) 0.55 (0.36-0.84) 0.88 (0.51-1.50)

AA 0.38 (0.17-0.83) 0.30 (0.11-0.87) 0.96 (0.24-3.74)

ARMS2 (A69S) rs10490924      

GG 1 1 1

GT 1.81 (1.33-2.47) 2.41 (1.60-3.62) 1.24 (0.75-2.05)

TT 3.25 (1.70-6.20) 7.85 (3.75-16.45) 2.48 (1.001-6.17)

C2/CFB (L9H) rs4151667      

TT 1 1 1

TA/AA 0.65 (0.35-1.19) 0.43 (0.17-1.10) 0.78 (0.25-2.44)

C2/CFB (R32Q) rs641153      

GG 1 1 1

GA/AA 0.56 (0.34-0.90) 0.38 (0.19-0.75) 0.66 (0.29-1.54)

C3 (R102G) rs2230199      

CC 1 1 1

CG 1.19 (0.86-1.64) 1.61 (1.08-2.40) 1.32 (0.80-2.19)

GG 1.28 (0.64-2.56) 1.81 (0.80-4.13) 1.18 (0.41-3.40)

C3 rs433594      

GG 1 1 1

GA 0.80 (0.58-1.12) 0.84 (0.55-1.28) 1.16 (0.68-1.96)

AA 0.83 (0.52-1.32) 0.94 (0.51-1.71) 1.01 (0.47-2.16)

CFI rs10033900      

CC 1 1 1

CT 1.27 (0.87-1.85) 0.82 (0.52-1.30) 0.68 (0.38-1.24)

TT 1.33 (0.86-2.06) 0.90 (0.52-1.54) 0.62 (0.31-1.24)

LPL rs256      

CC 1 1 1

CT/TT 0.88 (0.62-1.25) 0.75 (0.48-1.19) 0.83 (0.46-1.47)

LIPC rs12912415      

AA 1 1 1

AG/GG 0.90 (0.64-1.26) 0.75 (0.48-1.17) 0.98 (0.56-1.71)

MYRIP rs2679798      

AA 1 1 1

AG 1.04 (0.73-1.49) 1.42 (0.88-2.27) 1.34 (0.75-2.42)

GG 1.23 (0.81-1.87) 1.36 (0.77-2.39) 1.22 (0.61-2.47)

SKIV2L rs429608      

GG 1 1 1

GA/AA 0.57 (0.38-0.84) 0.55 (0.33-0.91) 1.01 (0.53-1.92)

ABAC1 rs1883025      

CC 1 1 1

CT 0.78 (0.56-1.09) 1.00 (0.67-1.50) 1.03 (0.61-1.74)
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TABLE 4 - (continued) 

Genes

SID vs no RPD/SID

OR (95% CI)

age and sex adjusted

RPD vs no RPD/SID

OR (95% CI)

age and sex adjusted

RPD vs SID

OR (95% CI)

age and sex adjusted

TT 1.09 (0.61-1.94) 0.53 (0.19-1.53) 0.38 (0.11-1.28)

CETP rs3764261      

CC 1 1 1

CA 1.27 (0.92-1.76) 1.15 (0.76-1.73) 1.06 (0.63-1.79)

AA 1.40 (0.84-2.32) 1.02 (0.50-2.07) 0.68 (0.29-1.63)

TIMP3 rs5749482      

GG 1 1 1

CG/CC 0.87 (0.60-1.27) 0.62 (0.37-1.04) 1.17 (0.40-3.40)

VEGFA rs943080      

CC 1 1 1

TC 0.81 (0.56-1.17) 1.34 (0.79-2.24) 2.00 (1.05-3.81)

TT 1.09 (0.72-1.65) 1.51 (0.84-2.73) 1.50 (0.73-3.08)

COL8A1 rs13081855      

GG 1 1 1

GT/TT 1.15 (0.78-1.68) 0.90 (0.53-1.52) 0.85 (0.45-1.59)

TNFRSF10A rs13278062      

TT 1 1 1

GT 0.92 (0.65-1.30) 0.73 (0.46-1.14) 0.89 (0.51-1.57)

GG 0.72 (0.46-1.12) 0.77 (0.45-1.31) 1.11 (0.57-2.18)

FRK/COL10A1 rs3812111      

TT 1 1 1

AT 0.93 (0.68-1.29) 0.92 (0.61-1.39) 0.96 (0.57-1.60)

AA 0.86 (0.52-1.44) 0.53 (0.24-1.15) 0.71 (0.28-1.79)

SLC16A8 rs8135665      

CC 1 1 1

CT 1.17 (0.85-1.61) 0.83 (0.54-1.28) 0.73 (0.43-1.24)

TT 1.31 (0.61-2.82) 0.74 (0.21-2.63) 0.74 (0.17-3.18)

ADAMTS9 rs6795735      

CC 1 1 1

TC 0.96 (0.68-1.36) 1.03 (0.66-1.61) 1.10 (0.63-1.92)

TT 1.34 (0.88-2.06) 1.35 (0.77-2.37) 0.90 (0.45-1.80)

TGFBR1 rs334353      

TT 1 1 1

GT 0.92 (0.66-1.27) 1.09 (0.72-1.64) 1.29 (0.76-2.18)

GG 1.03 (0.55-1.94) 0.62 (0.24-1.63) 0.61 (0.20-1.87)

RAD51B rs8017304      

AA 1 1 1

AG 0.82 (0.59-1.13) 0.85 (0.56-1.29) 1.26 (0.74-2.14)

GG 0.63 (0.38-1.03) 0.85 (0.46-1.56) 1.46 (0.67-3.19)

IER3/DDR1 rs3130783      

AA 1 1 1

AG 0.85 (0.61-1.19) 0.83 (0.54-1.28) 0.95 (0.55-1.64)

GG 2.54 (1.32-4.86) 1.48 (0.49-4.51) 0.34 (0.10-1.20)

B3GALTL rs9542236      

TT 1 1 1

CT 0.77 (0.55-1.09) 1.11 (0.70-1.74) 1.57 (0.89-2.76)

CC 0.92 (0.60-1.39) 1.02 (0.58-1.83) 1.49 (0.73-3.04)

Abbreviations: CI = Confidence Interval, OR = Odds' Ratio, RPD = reticular pseudodrusen, SID = soft indistinct drusen
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DISCUSSION

In this cross-sectional analysis of a population-based study, we showed that NIR imaging is superior 

to traditional CFP in the detection of RPD. We also found that RPD generally coincide with soft 

drusen, and were seldom seen as the only AMD feature. However, the AMD risk profile of RPD showed 

quantitative differences with that of SID. Those with RPD were more likely to be women, have older 

age, and carry risk variants in the C3, ARMS2 and VEGFA genes.

Our study confirms that NIR imaging is preferred over the use of CFP for detection of RPD.11,13,21,25 Of 

all persons diagnosed with RPD, 62.7% were not visible on CFP, only on NIR. By contrast, 7% of those 

with RPD were diagnosed on CFP and failed to be detected on NIR. This implies that multimodal 

imaging for complete AMD grading is better than using single imaging devices. Suzuki et al. described 

three subtypes of RPD: two were better visualized by NIR-imaging, and one, the ribbon like subtype, 

was more easily spotted on CFP.26 Indeed, we acknowledge that diagnosis of RPD on CFP is mostly 

based on recognition of the pattern of this feature. Aside from NIR and CFP, other image modalities 

can also reveal RPD, such as fundus auto fluorescence, optical coherent tomography (OCT), confocal 

blue reflectance, and indocyanine green angiography. Whether incorporation of all these methods 

further improves detection of RPD is questionable. A recent study assessed the accuracy of RPD 

detection using all these modalities, and found that NIR and OCT have the highest sensitivity, both 

94.6%.9

Using NIR imaging increased our estimate of the overall prevalence of RPD to 4.9%. All previously 

reported population estimates of RPD were based on CFP only, and were therefore lower; the Beaver 

Dam Eye Study reported an overall prevalence of 0.7% in a population aged 45+ years,6 the Blue 

Mountain Eye Study reported an overall prevalence of 1.95% in a population aged 50+ years,12 

and the Melbourne Collaborative Cohort Study recently reported an overall prevalence of 0.41% 

in a population 48-86 years of age.4 In our study, RPD were bilateral in 69% of cases, while other 

population-based cohorts reported a slightly lower frequency of bilaterality, 51-63% respectively.4,6,12 

The higher rates in our study could be due to the improved detection of RPD using NIR.

We identified several risk factors for RPD and SID. For RPD, demographic risk factors were older age 

and female sex, factors which have been reported by several studies.6,7,11-13,27 We did not find any 

statistically significant environmental risk factors, although the relationship with current smoking 

was suggestive. Other studies reported risks of RPD for hypertension, lower income, lower education, 

higher body mass index, angina pectoris, HDL cholesterol, and triglycerides, but we and many others 

could not confirm these findings. 6,7,11-13,21,27 Associations which showed a preference for SID were 

increased HDL-cholesterol, and decreased triglycerides. These trends have been observed previously 

for Late AMD, and have not been explained thus far.20 With respect to AMD risk variants, those in the 

CFH, C2/FB and ARMS2 genes were significantly associated with both RPD and SID in this study. C3, 

however was only associated with RPD. The lack of association with other risk variants may be due to 

our limited statistical power to find minor associations. Remarkably, ARMS2 appeared to have a strong 

predilection for RPD. Homozygous carriers of the ARMS2 risk variant were twice as likely to have RPD 

than SID. We did not find this differential distribution for the CFH nor C2/FB risk variants. Prior reports 

found stronger associations with ARMS2 than CFH.27,28 Another gene showing a tendency for RPD 

was VEGFA. Although this gene was not significantly associated with either phenotype, it showed a 

significant risk difference between RPD and SID.
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Eyes featuring RPD without any type of drusen were rare in our study. We evaluated the risk profiles 

of these participants (N=5), and these were not remarkably different from the entire group of RPD 

(Table 2 and 3). Noteworthy, none of the RPD in these participants were observed on CFP, only on NIR 

imaging. RPD without any type of drusen may represent other phenotypes than AMD; in literature, 

RPD have been reported to accompany Sorsby fundus dystrophy, pseudoxanthoma elasticum, 

acquired vitelliform lesions, and systemic disorders such as vitamin A deficiency, cardiovascular 

disease and complement mediated IgA nephropathy.28-33 In our study, these 5 patients showed no 

other retinal pathology aside from RPD. A focus on unravelling the etiology of isolated RPD may help 

shed light on overarching molecular mechanisms in retinal disease.

Current insights into RPD pathogenesis are still highly limited, but a vascular etiology has been 

suggested.27,28 The genetic predilections in our study may point toward this hypothesis. ARMS2 

was found to be expressed in the ellipsoid layer of the photoreceptors and in the intercapillary 

pillars of the choroid.34,35 The first is close to the location of RPD,34 and the latter may help explain 

the vascular hypothesis.35 Another hint in this direction is the higher susceptibility of VEGFA 

and ARMS2 for neovascular AMD24, although RPD do not preferentially accompany this AMD 

subtype.4,6,7,36 Furthermore, the genes CFH, C3, and, VEGFA have been associated with cardiovascular 

and coronary artery disease.27,28 Morphologic changes in eyes with RPD, suggest that these lesions 

follow the pattern of the watershed zones of the choroid, and correspond with local thinning of 

this layer.37 Spaide found that choroidal thinning is even more pronounced when RPD regress 

and photoreceptors shorten38. A recent study of retinal imaging with adaptive optics showed that 

photoreceptor changes precede RPD regression.39 Several histopathologic studies have studied 

the molecular content of RPD and SID and found significant overlap: both contain unesterified 

cholesterol, complement factor H, apolipoprotein E, and vitronectin.16,40 There are also remarkable 

differences: RPD lack immunoreactivity for photoreceptors, Müller cells, and RPE marker proteins, 

and have only low concentrations of esterified cholesterol and other neutral lipids.16,40 Why the 

deposit in RPD is located above rather than below the RPE cell is unclear. Several hypotheses 

have been made. Rudolf et al. suggested that loss of RPE cell polarity may lead to deposition of 

unphagocytized photoreceptor outer segments above rather than below the RPE cell.41 Curcio et al. 

suggest that perturbation of cholesterol homestasis and the lipid transfer between the RPE cell and 

the photoreceptor cell in the context of an outer retinal lipid-recycling program, could explain the 

formation of these deposits.16 Another hypothesis may be that shortening of the RPE villi42 jeopardize 

close contact with photoreceptor outer segments, and may hamper uptake of shedded discs from 

the photoreceptor by the RPE cell. In AMD, the formation of RPD appears to follow that of soft drusen, 

since the concurrence of these lesions carry a higher risk of progression to Late AMD.4,6,20 How the 

associated genes, the choroidal anatomic changes, and formation of drusenoid material above the 

RPE are related remains an intriguing question for future studies.

To our knowledge, this is the first population-based study, studying RPD using another imaging 

device aside from CFP. Other strengths include the large sample size of unselected persons, the 

study of RPD within the context of other Early AMD features, and the comparison of risk profiles 

of RPD versus soft drusen. Other reports did not specify the frequency of concurrent AMD lesions 

in eyes with RPD. Furthermore, we analyzed a much more comprehensive set of demographic, 

environmental and genetic risk factors for RPD than previous population-based and clinical studies, 

which led to new insights into the genetic background of RPD. A limitation of our study is the lack of 

follow up data with NIR imaging, hampering the study of RPD incidence and progression. This needs 

to be addressed in prospective studies.
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ABSTRACT

Purpose To examine human performance and agreement on reticular pseudodrusen (RPD) detection 

and quantification using single- and multi-modality grading protocols and to describe and evaluate 

a machine learning system for the automatic detection and quantification of reticular drusen using 

single- and multi-modality information.

Methods Color fundus, fundus autofluoresence and near infra-red images of 278 eyes from 230 

patients with or without presence of RPD were used in this study. All eyes were scored for presence 

of RPD during single- and multi-modality setups by two experienced observers and a developed 

machine learning system. Furthermore, automatic quantification of RD area was performed by the 

proposed system and compared with human delineations.

Results Observers obtained a higher performance and better inter-observer agreement for RPD 

detection using multi-modality grading, achieving areas under the Receiver operating characteristics 

(ROC) of 0.940 and 0.958, and a kappa agreement of 0.911. The proposed automatic system achieved 

an area under the ROC of 0.941 using a multi-modality setup. Automatic RPD quantification resulted 

in an intra-class correlation (ICC) value of 0.704, which was comparable with ICC values obtained 

between single modality manual delineations.

Conclusion Observer performance and agreement for RPD identification improved significantly using 

a multi-modality grading approach. The developed automatic system showed similar performance 

as observers and automatic RPD area quantification was in concordance with manual delineations. 

The proposed automatic system allows for a fast and accurate identification and quantification of RD, 

opening the way for efficient quantitative imaging biomarkers in large dataset analysis.
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INTRODUCTION

Age-related macular degeneration (AMD) is a progressive eye disease affecting mainly the elderly 

and causing vision loss at advanced stages.1 The early stages of AMD are characterized by the 

presence of pigmentary changes and drusen, which are deposits accumulating between the retinal 

pigment epithelium (RPE) and the Bruch's membrane. A sub-type of drusen, commonly addressed as 

subretinal drusenoid deposits or reticular pseudodrusen (RPD), present different characteristics and 

distribution than normal drusen and have been proven to be a strong risk factor for progression to 

advanced AMD.2-7 Therefore, their identification and quantification is of paramount importance for a 

better understanding of disease progression.

RPD are visible on color fundus (CF) photography, fundus autofluorescence (FAF) imaging and near 

infra-red (NIR) imaging amongst other retinal imaging modalities such as confocal blue reflectance, 

indocyanine green (ICG) angiography, spectral-domain optical coherence tomography (SD-OCT) 

and fluorescein angiography.8-13 On CF images, RPD are described as indistinct, yellowish interlacing 

networks of 125 μm to 250 μm wide.14 On FAF images, RPD are characterized as hypofluorescent 

lesions, while on NIR images, RPD are characterized as groups of hyporeflectant lesions against a 

mild hyper-reflectant background.15-17 Previous studies have reported a difference in sensitivities 

for RPD detection among image techniques.12,17 However, RPD identification using a single image 

modality is challenging as the characteristic changes associated to RPD are often subtle and might 

not always be detected using only one imaging technique. Therefore, for an accurate diagnosis, RPD 

detection should be performed using two or more image modalities.11 Although other studies have 

investigated and compared the performance of individual image techniques for RPD detection,12,17 

a study of the performance obtained using multiple image modalities simultaneously has not been 

performed as far as we are concerned.

Despite its expected higher accuracy, grading of multi-modality images represents a considerable 

workload for a human grader. Machine learning algorithms have huge potential for dealing with 

complex information extracted from different image modalities. Furthermore, automatic systems 

are not influenced by fatigue and mindset and, therefore, less prone to variability than humans. 

Previously developed systems for the automatic detection of drusen showed good performance on 

CF images.18-21 Whether they also perform well fusing information from different image modalities is 

currently unknown. As far as we are concerned, there is no method for the automatic identification 

of RPD fusing information from different image modalities.

The aim of the present study is two-fold. Firstly, we evaluate the performance and the agreement 

between human observers using single- as well as multi-modality grading approaches for RPD 

detection. In the single-modality approach, RPD detection is performed using only one image 

technique (namely, CF, FAF or NIR). In contrast, during the multi-modality grading session, the 

observers evaluate the three available image modalities simultaneously. Secondly, we aim to 

investigate the effectiveness of a novel machine learning algorithm for the automatic identification 

and quantification of RPD using combined information from different image modalities by comparing 

its performance to human observers.
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METHODS

Study dataset

A set of subjects with and without RPD were selected from the Rotterdam Study, a prospective 

cohort study aimed to investigate risk factors for chronic diseases in the elderly.22 The study adhered 

to the tenets set forth in the Declaration of Helsinki and Investigational Review Board approval was 

obtained. Only patients with CF, FAF and NIR images available were included in this study. CF images 

were taken using a 35° field of view Topcon TRC 50EX fundus camera (Topcon Optical Company, 

Tokyo, Japan) with a Sony DXC-950P digital camera with a resolution of 768 x 576 pixels. FAF and 

NIR images were taken with a Heidelberg Retina Angiograph 2 (Heidelberg engineering, Heidelberg, 

Germany) with a field of view of 30° and a resolution of 768 x 768 pixels. In total 278 eyes of 230 

patients aged 65 years and older were selected from the last examination round of the Rotterdam 

Study. All CF images were graded according to the Wisconsin Age-related Maculopathy Grading23 

and the International Classification and Grading System for age-related maculopathy and age-

related macular degeneration24 by local graders of the Rotterdam Study using visual assessment. 

These annotations constitute the reference standard for our study. We selected all the eyes where 

RPD based on CF images were identified in this round (N=72). Status of RPD was also confirmed 

on FAF and NIR. For positive and negative controls we selected eyes that were graded by the local 

Rotterdam Study graders as having soft distinct or soft indistinct drusen but not with RPD (N=108) 

and eyes that did not contain any type of drusen (N=98). The positive and negative controls did not 

have any signs of RPD in the other modalities (FAF and NIR). As the database did not contain any 

information about the extent of RPD area, two human observers (G.B. and C.B.) made in consensus 

RPD area delineations using the three modalities simultaneously for the eyes containing RD. These 

delineations were used as reference standard for the quantification of RPD area.

Observer study: single- versus multi-modality grading

All images were evaluated independently by two human observers (G.B. and C.B.) for evidence of 

RD. RPD were defined as indistinct, yellowish interlacing networks of 125 μm to 250 μm wide on CF 

image;14 groups of hyporeflectant lesions in regular patterns on FAF15-17 and groups of hyporeflectant 

lesions against a mildly hyper-reflectant background in regular patterns on NIR images images.17 

Observer 1 has 4 years of reading experience for all three imaging modalities, whereas Observer 2 

has 19 years of reading experience on CF imaging and 5 years on FAF and NIR imaging. The observers 

were asked to give a score ranging from 0 to 1, indicating the likeliness of presence of RD. Two 

different grading approaches were performed: single- and multi-modality grading. During single-

modality grading, the observers graded each image modality separately in a randomized order. 

CF, FAF and NIR images were pooled and shown randomly to the observers. Observers were also 

asked to indicate whether the image was of sufficient quality for grading. Bad quality was assigned 

if the observer was not confident in assessing the image for RPD as a result of low image quality. 

During multi-modality grading, observers were asked to diagnose RPD after observing CF, FAF and 

NIR images from the same eye simultaneously. The eyes were shown in a randomized order in this 

grading session as well.

In a separate grading session, the observers manually delineated in consensus the area covered by 

RPD based on one single modality, i.e. single-modality RPD delineation on CF, FAF or NIR images. 

Only the 72 eyes containing RPD as indicated by the reference were taken into account for the 

quantification of RPD area.
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Automatic reticular drusen identification

The proposed machine learning algorithm analyzed simultaneously the available modalities from 

an eye examination to automatically identify reticular drusen areas. The algorithm assigned the 

complete eye examination a probability between 0 and 1 indicating the probability of presence of 

RPD and provided a quantification of the area covered by them. To accomplish this, the algorithm 

performed three steps: preprocessing, feature extraction, and classification and quantification.

Preprocessing

In the preprocessing step, two different methods were applied to the images: image registration and 

vessel removal.

1. Registration will provide a geometrical alignment across modalities to identify corresponding 

pixels that represent the same scene. This multi-modal image registration was performed using 

a semiautomatic affine method, where the images are deformed to accurately match user 

specified points or landmarks.25 In this study, three corresponding landmarks on prominent 

image locations, such as vessel bifurcations, were manually selected on each modality and 

used to perform the registration.

2. To reduce intensity variations due to presence of vessels, the retinal vasculature was removed 

from the images. The vasculature was automatically extracted using a previously developed 

algorithm26 and used as input in an inpainting algorithm,27 which removes the vessels by 

interpolating intensities at the supplied image locations. Figure 1 shows an example eye after 

vessel removal.

FIGURE 1 - Co-registered (A) color fundus photograph, (B) fundus autofluorescence and (C) near infra-red images 

and their corresponding results after vessel removal (D-F).

                   (A)                                                      (B)                                                      (C)

                   (D)                                                      (E)                                                      (F)
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Feature extraction

To perform an automatic analysis of the images, the machine learning algorithm uses information 

which is extracted from the images and encoded in numerical values or so called features. To do so, 

each color channel of the CF image as well as the FAF and NIR image were separately convolved with 

a set of Gaussian filters. These filters are based on Gaussian derivatives up to second order at different 

scales and are invariant to rotation and translation.28 For each resulting filtered image, the mean, 

standard deviation, skewness and kurtosis values in a circular neighborhood around each pixel were 

calculated. The corresponding features for each pixel were then obtained by concatenating these 

extracted values in a single feature vector.

Classification and quantification

To determine whether a pixel is part of a RPD area, a random forest classifier was used to obtain 

an automatic classification based on the calculated features. This classifier operates by constructing 

a multitude of decision boundaries (trees) to make a separation between multiple classes.29 

After training, the random forest classifier provided a probability between 0 and 1 indicating the 

probability that the pixel belongs to a RPD area based on labeled training examples and the input 

pixel feature vector. Figure 2 shows an example eye exam with the output of the classifier. Finally, an 

image score indicating the likelihood of the eye exam to contain RD, was assigned by taking the 99th 

percentile of the obtained probability map.

FIGURE 2 - Example of the classification result obtained by the proposed machine learning algorithm. Given an 

eye exam consisted of (A) a color fundus photograph, (B) a fundus autofluorescence image and (C) a near infra-

red image; the algorithm outputs (D) a probability map indicating the likelihood for each pixel to be part of a 

reticular drusen area. Red values indicate higher probability to be reticular drusen.

                            (A)                                                                       (B)

                            (C)                                                                       (D)
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To quantify the area covered by RD, a threshold was set on the probability map. This threshold 

was image based and experimentally determined as the 55th percentage of the maximum value of 

the probability map. Only the area inside the Early Treatment Diabetic Retinopathy Study (ETDRS) 

grading grid was taken into account for the quantification.

Statistical analysis

The performance of the observers and the proposed machine learning algorithm for the single- and 

multi-modality approaches was evaluated by measuring the area (Az) under the Receiver Operating 

Characteristic (ROC) curve.30 Statistical comparisons were made using bootstrap analysis with 5000 

bootstraps.31 Bootstrap analysis is an nonparametric test that is commonly used to estimate the 

variance of ROC analysis. Results with a p-value lower than 0.05 were seen as statistically significant. 

Bonferroni correction was applied to counteract the problem of multiple comparisons.32 For observers, 

kappa statistics were also reported to assess inter observer variability.33 As the proposed machine 

learning algorithm requires labeled example data for training, the evaluation was performed using a 

patient-based leave-one-out strategy.34

Automatic quantification of RPD area was evaluated by calculating the percentage of detected RPD 

area inside the ETDRS grading grid and was compared with the observer delineations. RPD area 

agreement with observers was measured using intra-class correlation (ICC) statistics.

RESULTS

Image quality assessment

Table 1 shows the image quality analysis of the observers for the different image modalities. Of 

the 278 eyes, only 172 (61.9%) were graded by both observers to have all image modalities with 

good quality and were established as the "good quality" set for the subsequent data analysis. Bad 

quality of the FAF image was the main reason for a bad quality indication for the multi modal exam 

(CF+FAF+NIR).

TABLE 1 - Number and percentage of good quality images as indicated by observers for the different image 

modalities independently. Last column shows the number of images where both observers agree that the 

image is of good quality.

Observer 1 Observer 2 Consensus

CF 272 (97.8%) 268 (96.4%) 264 (95.0%)

FAF 211 (75.9%) 195 (70.1%) 185 (66.5%)

NIR 269 (96.8%) 265 (95.3%) 264 (95.0%)

Abbreviations: CF = color fundus photographs, FAF = fundus autofluorescence images, NIR = near infra-red images.

Comparison of single- and multi-modality grading

Figure 3 shows the ROC curves for the single- and multi-modality grading approaches. The point on 

the curve closest to the upper left corner in the ROC curve is used to compute sensitivity/specificity 

pairs.
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FIGURE 3 - ROC curves for the identification of eyes with reticular drusen using (A) color fundus photographs, (B) 

fundus autofluorescence images, (C) near infra-red images and (D) a multi-modality setup.

Table 2 shows the Az values and sensitivity/specificity pairs for the single- and multi-modality 

grading of Observer 1 and Observer 2, respectively, calculated on the full data set and on the subset 

of good quality images as indicated by both observers. The performance of both observers for RPD 

detection considerably increased when performing a multi-modality grading.

Kappa statistics were calculated to measure inter-observer variability during single-modality and 

multi-modality grading sessions. Table 3 shows the kappa values between the observers for the 

different grading sessions. Observers achieved a higher agreement using multi-modality grading. 

When considering only good quality images, observers also achieved high agreement using FAF 

images.

BA

C D
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TABLE 2 - Performance of Observer 1 and 2 for RPD detection using single- and multi-modality grading.

All Good quality

Az Se Sp Az Se Sp

Observer 1 Single-modality CF  0.879* 0.778 0.951  0.888* 0.789 0.974

FAF  0.881* 0.889 0.806 0.959 0.946 0.966

NIR 0.936 0.903 0.956 0.936 0.929 0.918

Multi-modality 0.940 0.917 0.961 0.956 0.944 0.963

Observer 2 Single-modality CF 0.944 0.944 0.989 0.944 0.930 0.917

FAF  0.793* 0.653 0.951 0.961 0.973 0.946

NIR 0.932 0.903 0.922 0.929* 0.900 0.918

Multi-modality 0.958 0.972 0.942 0.974 1.000 0.949

Area (Az) under the ROC values and optimal sensitivity (Se) and specificity (Sp) values are reported.
*Indicates a statistical significant difference of the Az value with respect to the multi-modality approach.

Abbreviations: CF = color fundus photographs, FAF = fundus autofluorescence images, NIR = near infra-red images, RPD = 

reticular pseudodrusen, ROC = receiver operating curve.

TABLE 3 - Kappa agreement and 95% confidence intervals between observers for single-modality and multi-

modality reading sessions.

All Good quality

κ 95% CI κ 95% CI

Single-modality CF 0.654 (0.556-0.752) 0.724 (0.632-0.817)

FAF 0.468 (0.363-0.572) 0.938 (0.879-0.998)

NIR 0.884 (0.822-0.945) 0.839 (0.767-0.910)

Multi-modality 0.911 (0.857-0.965) 0.936 (0.874-0.998)

Abbreviations: CF = color fundus photographs, CI = confiodence interval, FAF = fundus auotofluorescence images, NIR - near 

infra-red images.

Performance of the automatic method

The ROC curves for the proposed machine learning algorithm are shown in Figure 3. The 

corresponding Az values and the sensitivity/specificity pairs for the single- and multi-modality 

approaches are summarized in Table 4.

Quantification of the area covered by reticular drusen

The boxplots in Figure 4 show the RPD area percentage inside the ETDRS grading grid as delineated 

by the observers and as identified by the automatic system. Only eyes which were of good quality 

as indicated by both observers were taken into account. The multi-modality area delineations 

made during consensus grading of the two observers was used as the reference for the RPD area 

quantification.
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The agreement between single-modality RPD area delineations made by the observers and the 

reference delineations set using multi-modal information reached ICC values of 0.580 (-0.034;0.830), 

0.790 (0.409;0.920) and 0.930 (0.763;0.976) for the CF, FAF and NIR delineation, respectively. For the 

automatic quantification of the RPD area, ICC values of 0.637 (0.395;0.796), 0.389 (0.082;0.631) and 

0.557 (0.280;0.747) were obtained for the single-modality analysis of CF, FAF and NIR with respect to 

the reference delineations. Comparing the automatic multi-modality approach with the reference 

standard, an ICC value of 0.704 (0.495;0.837) was obtained.

TABLE 4 - Performance of the automatic system for RPD detection using single- and multi-modality grading.

All Good quality

Az Se Sp Az Se Sp

Single-modality CF 0.942 0.833 0.922 0.939 0.887 0.860

FAF 0.844* 0.806 0.747 0.935 0.919 0.891

NIR 0.927 0.847 0.893 0.919 0.814 0.902

Multi-modality 0.941 0.875 0.873 0.949 0.861 0.882

Area (Az) under the ROC values and optimal sensitivity (Se) and specificity (Sp) values are reported.
*Indicates a statistical significant difference of the Az value with respect to the multi-modality approach.

Abbreviations: CF = color fundus photographs, FAF = fundus autofluorescence images, NIR = near infra-red images, RPD = 

reticular pseudodrusen, ROC = receiver operating curve.

FIGURE 4 - Box-plots showing the percentage of reticular drusen area inside the ETDRS grading grid. Manual 

multi-modality was seen as the reference and is shown in grey. Single modality manual area percentages are 

shown in blue. The area percentage obtained by the automatic method for single- and multi-modality analysis 

are shown in red.

Abbreviations: CF = color fundus photographs, ETDRS = Early Treatment Diabetic Retinopathy Study, FAF = fundus 

autofluorescence images, NIR = near infra-red images, RPD = reticular pseudodrusen.
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DISCUSSION

In this study, we assessed the performance achieved for RPD detection using multimodal information 

and compared it to the one obtained using several single image techniques. In our larger dataset,11-13,17 

we demonstrated that a significantly higher performance, as well as a better inter-rater agreement, 

was achieved when the reticular pattern was assessed in a multi-modality grading approach. 

Moreover, our automatic machine learning algorithm for RPD detection and quantification using 

multimodal information proved to perform within the same range as the human graders.

Two independent human observers identified RPD areas using two different grading protocols. During 

the single-modality grading session, only information from a single image techniques was available; 

while, during the multi-modality approach, the observers evaluated evidence of RPD using all the 

modalities simultaneously. Both observers achieved higher performance using the multi-modality 

approach reaching Az values of 0.940 and 0.958, respectively (see Figure 3 and Table 2). Although 

previous studies only evaluated the accuracy for detecting RPD of single image modalities,8,11,12 our 

results confirm their conclusions that a more accurate diagnosis of RPD is obtained using multiple 

image modalities.

In contrast to observer 1, observer 2 achieved high performance on RPD assessment using CF 

images. Possible reasons for this are the larger experience of this observer on this modality and the 

lower sensitivity that this image technique has.12 The disparity between observers' performance was 

substantially reduced when the assessment was performed using multiple image modalities (see 

Table 2). When the observers scored FAF images, the performance was significantly lower than when 

they used multi-modality reading. This may be due to the poor quality level of the FAF images. Only 

66.5% of the images were considered of good quality by both observers, as it is shown in Table 1. 

During the FAF acquisition, a mean intensity image is constructed to reduce noise in the image. 

However, eye movements may cause displacement errors resulting in a lower contrast and thus 

lower quality of the FAF image. Another reason is the presence of cataracts in the study population. 

The wavelength used for FAF imaging is more affected by cataract than the one used in NIR 

imaging, resulting in lower image quality. As it is shown in Table 2, the adoption of a multi-modality 

grading approach can overcome image quality issues, maintaining a high detection performance 

independently of the quality level of a particular image techniques. When considering only the 

subset of good quality images, the performance of both observers increases for both single- and 

multi-modality gradings.

Inter-observer agreement was also investigated using the two grading protocols. Table 3 shows 

that the agreement between observers substantially increased when multiple imaging techniques 

were used to evaluate the evidence of RD. When taking only the subset of good quality images into 

account, the agreement between observers improved using CF, FAF and the multi-modal approach. 

However, the agreement using CF images is still substantially lower than using the other modalities. 

Other studies included multiple graders but no information about inter-observer agreement was 

reported.12

In this study, we also developed and evaluated a machine learning algorithm for the automatic 

identification and quantification of RPD using multimodal information. The results showed that the 

proposed system achieved similar performance as the observers, see Figure 3 and Table 4. Similar to 

the observers' gradings, the incorporation of multimodal information improved the performance 

of the algorithm. Using multimodal information, the proposed algorithm achieved an Az value of 

0.941 and a sensitivity/specificity pair of 0.875/0.873. Compared to the observers, that reached a 
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kappa agreement of 0.87 with the reference, the automatic system has a kappa agreement of 0.70. 

However, 20% of the misclassified cases corresponds to cases where the observers also disagree. Of 

the false positive cases, 9 cases contained low quality images, 3 cases presented geographic atrophy, 

1 case showed a neovascular macular detachment and 12 cases contained soft indistinct drusen. As 

described in other publications11,35,36, RPD and drusen have very similar characteristics and might 

therefore more easily be misinterpreted by the automatic system. Better discriminant features, such 

as image context information or local intensity changes, might improve the performance of the 

automatic system, but this has to be further investigated.

Quantification of RPD area is a more difficult task due to the undefined boundaries of RD.15-17 When 

comparing the manual delineations performed on CF images with the reference delineations based 

on multi-modal information, an ICC value of 0.580 was achieved. When comparing the FAF or NIR 

delineations with the reference delineations, the agreement was better, reaching ICC values of 0.790 

and 0.930, respectively. As presented in Figure 4, the RPD area was underestimated using CF images 

when compared to the other image techniques. As reported in previous publications,12,17 the visibility 

of RPD differs over modalities, causing these differences. As RPD are more pronounced on FAF and 

NIR, the delineations on these modalities were more similar to reference delineations. The quantified 

RPD area, which was automatically obtained by the proposed algorithm, was in agreement with the 

area delineated by the observers, reaching an ICC value of 0.704. It has to be noted that only images 

of good quality were used for RPD area quantification as images with insufficient quality were not 

suitable as it was nearly impossible for observers to delineate RPD area on these images. Another 

limitation of this study was that the multi-modal approach only included fundus images, excluding 

information obtained with spectral domain optical coherence tomography (SD-OCT). Including 

this modality in the multimodal protocol, a better understanding of the reticular pattern might be 

obtained and, consequently, an increased accuracy in their identification.9,10,35 SD-OCT can provide 3D 

information about RPD formation and is essential for RPD volume measurements. This enhancement 

will be of great importance for clinical trials studying the development and progression of RPD. We 

will investigate this improvement in further studies.

In conclusion, we were able to show that a multimodal approach significantly increased observer 

performance and inter-observer agreement for detection of reticular drusen in fundus images when 

the information of different imaging modalities was evaluated simultaneously. Furthermore, an 

automatic machine learning algorithm for detection and quantification of RPD using multimodal 

information was developed and evaluated, showing comparable results with those obtained by 

observers. The area covered by RPD was also automatically quantified by the algorithm, tallying the 

values manually provided by the observers. The absence of SD-OCT is regarded as a limitation of this 

study and will be investigated in future work. This automatic algorithm yields a quick and reliable 

diagnosis and quantification of reticular drusen, allowing for large dataset analysis within population 

studies and to gain insights into risk factors involved in AMD and disease progression.
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SUMMARY

In this chapter we provide an overview of the current concepts on trace elements, vitamins, lipids in 

their relationship to age-related macular degeneration (AMD). Intake zinc, and omega-3 fatty acids 

can help lower the risk of AMD, in particular in those at high genetic risk. Vitamin D and nutrients 

influencing epigenetics appear to have a beneficial effect, but more research is needed before 

recommendation of these nutrients is warranted.
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Dietary nutrients have been implicated in the development of age-related macular degeneration 

(AMD) for years. The first paper reporting a beneficial effect of a nutrient on AMD was published 

in 1988, in which the National Health and Nutritional Examination Survey 1 (NHANES-1) study 

investigated the dietary intake of vitamin A (P trend =0.058) in AMD.1 Since then, many more papers 

on this topic have been published. This chapter will provide an overview of nutrients investigated in 

relation with AMD.

CAROTENOIDS

There are many different carotenoids; over 600 are known to date. These can be split in two groups: 

carotenes, which refer to hydrocarbon carotenoids, and xanthophyll, a carotenoid with one or more 

oxygen groups. Carotenoids are pigments and can be found in chloroplasts and chromoplasts in 

predominantly plants and algae. Their function is to absorb blue light to protect the plants and 

algae from photo-damage, and absorb the light energy for use in photosynthesis. In the eye, 

lutein and zeaxanthin are xanthophylls which protect the macula from blue and ultraviolet (UV)-

light damage. All dietary carotenoids have antioxidant function; α carotene, β carotene, γ carotene 

and β cryptoxanthin also have vitamin A activity. These four carotenoids are converted to retinal in 

herbivores and omnivores.2

Astaxanthin

Astaxanthin is a red pigmented xanthophyll, and can be found in salmon and other red colored sea 

foods (Table 1). Two studies added this carotenoid to a cocktail of anti-oxidants, including lutein and 

zeaxanthin. Both studies reported a positive effect of this cocktail on visual functions. Nonetheless, a 

specific beneficial effect for astaxanthin cannot be concluded from these results.3,4

α Carotene

This carotene is an antioxidant and has vitamin A activity (Retinal Activity Equivalents; RAE); 1 RAE = 1 

μg retinol or 24μg α carotene. A meta-analysis based on four prospective cohort studies reported no 

significant association for α carotene and the risk of developing early AMD (Odds’ ratio (OR) 1.05; 95% 

CI 0.87-1.26).5 However, one of these studies did find a trend for intake of α carotene ten years prior to 

baseline examination and incident large drusen (P trend = 0.02).6 Another study found a trend with 

pigmentary changes (P trend = 0.03), but not with drusen.7

Recently, a study investigated serum levels of carotenoids and the risk of AMD in a Chinese population 

sample.8 Serum levels of α carotene were significantly lower in subjects with exudative AMD versus 

controls (P < 0.001), while subjects with early AMD had higher serum levels versus controls (P 

<0.001). The relative risk was reduced for exudative AMD (Relative risk (RR) 0.24; 95% CI 0.12-0.51), 

and increased for early AMD (RR 2.22; 95% CI 1.37-3.58). Why α carotene would increase the risk for 

early AMD and not for late is not clear. 

β Carotene

This antioxidant has vitamin A activity; 1 RAE = 12μg β carotene and has been studied intensively 

in many diseases. A meta-analysis on this nutrient reported no association with incident early AMD 

(RR 1.04; 95% CI 0.86-1.25).5 Contradictory results were found for late AMD. Two studies from the US 

on exudative AMD reported a lower risk for those with higher intakes; 9,10 in contrast, a study from 

Australia found a higher risk (P trend = 0.027).11 β carotene supplements have also been tested. A 

meta-analysis based on two randomized controlled trials showed neither a significant association 
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with any AMD (RR 1.03; 95% CI 0.89-1.19) nor with advanced AMD (RR 0.97; 95% CI 0.69-1.36).12 

Serum levels of β carotene were investigated in a Chinese population. The investigators found higher 

levels to be associated with an increased risk of exudative AMD (RR 2.36; 95% CI 1.30-4.29).8 This 

would favor the diet findings from the earlier mentioned Australian study. Differences in population 

structure, definition of the outcome, and measurement error of the exposure may explain the 

difference of study results.

TABLE 1 - Nutrients in Foods 

Nutrient Foods

Astaxanthin Salmon, throut, shrimp, crayfish

Betaine Grain products, fish, spinach, sugar beets

α Carotene dark-leafy vegetables (spinach, kale) yellow/orange vegetables (carrots, bell peppers)

β Carotene dark-leafy vegetables (spinach, kale) yellow/orange vegetables (carrots, bell peppers)

β Cryptoxanthin Orange rind, egg yolk, papaya, apples

Lutein dark-leafy vegetables (spinach, kale) yellow/orange vegetables (carrots, bell peppers)

Lycopene Red fruits and vegetables (tomatoes, bell peppers, watermelon)

Meso-zeaxanthin Sea foods

Methionine Poultry, fish, dairy products

Omega-3 fatty acids - ALA vegetable oils (flaxseed, canola oil)

Omega-3 fatty acids - DHA/EPA Oily fish (herring, salmon, sardines, trout)

Omega-6 fatty acids - LA vegetable oils (canola oil, safflower oil, corn oil)

Omega-6 fatty acids - AA poultry, meat

Resveratrol Skin red grapes, other fruits, red wine

Selenium Shellfish and crustacea, egg yolk

Vitamin A liver, butter, cheddar cheese, milk

Vitamin C Fruits and vegetables (kiwi, peppers, parsley, rose hips)

Vitamin D* Oily fish, dairy products, beef and fish liver

Vitamin E# Corn oil, soybean oil, margarine, dressings

Zinc Fortified cereals, meats, dairy products, nuts, seeds

Zeaxanthin dark-leafy vegetables (spinach, kale) yellow/orange vegetables (carrots, bell peppers)

Abbreviations: AA, arachidonic acid; ALA, α-liolenic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic 

acid

* Levels of vitamin D depends on country. Some foods (mostly dairy products) are fortified with vitamin D

# There are many different forms of vitamin E, the most common is α-tocopherol

β carotene may have interaction with genetic factors. Dietary intake was analyzed for AMD genotypes 

and the risk of early AMD in the Rotterdam Study.13,14 Carriers of the risk variant CFH (Y402H) had a 

higher risk of developing AMD in particular in those that had a low intake of β carotene. Carriers 

could reduce their AMD risk by increasing their intake (P trend = 0.05) (Figure 1). There are several 

explanations. β Carotene is inversely related to CRP levels, and CRP is related to the CFH (Y402H) 

genotype and AMD.15 These results imply that the genetic risk can be ‘eaten’ away. Whether 

supplementation would further decrease the risk is not clear and requires a note of caution. The 
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results of two randomized controlled trials indicated that β carotene supplementation in smokers 

increased risk of developing lung cancer, and many commercial supplements do not include this 

nutrient anymore.16,17

β Cryptoxanthin

This carotenoid is very similar to β carotene, except for one oxygen group. The retinal activity of β 

cryptoxanthin is two times lower than β carotene; 1 RAE = 24 μg β cryptoxanthin. In the literature, 

an inverse correlation of β cryptoxanthin with lung cancer has been reported in in vitro studies. This 

nutrient could potentially act as a chemoprotective agent in cancer, 18 but this beneficial effect is 

questionable since it appears to cause a lower survival in patients with malignant glioma.19

No consistent associations have been found for β cryptoxanthin and AMD.5,7-11,20,21

Lutein, zeaxanthin and meso-zeaxanthin

The pigment of the macula consists of lutein, zeaxanthin and meso-zeaxanthin. These carotenoids 

absorb blue light and UV, and protect the retina from damage by free radicals. Dietary intake (Table 1) 

is very important, because the human body cannot synthesize lutein/zeaxanthin. However, there 

are some reports that meso-zeaxanthin might be synthesized from lutein in the retina.22 Because of 

the macular location, these nutrients have been of high interest in ophthalmic research, especially 

in AMD.

Serum levels lutein/zeaxanthin

Many studies have investigated serum levels of lutein/zeaxanthin in patients and controls. In the 

majority of the studies an inverse association was found for lutein/zeaxanthin levels in serum with 

early, late and any AMD. In stratified analysis, zeaxanthin was more significantly associated with AMD 

than lutein.23

Dietary lutein/zeaxanthin

A meta-analysis of observational studies on diet has been performed with data from six studies. 

Overall, the risk of early AMD was not significantly associated with intake of lutein/zeaxanthin (RR 

0.96; 95% CI 0.78-1.17).24 The meta-analysis for advanced AMD did show an association with intake 

of lutein/zeaxanthin (RR 0.74; 95% CI 0.57-0.97), most prominent for exudative AMD (RR 0.68; 95% 

CI 0.51-0.92).

Case control studies also reported a significant association of lutein/zeaxanthin intake with a lower 

risk for advanced AMD.9,10 Seddon et al (1994) also showed an inverse trend with intake of lutein/

zeaxanthin, a trend which was particularly present in smokers.

As β carotene, lutein/zeaxanthin also interacted with genetic factors. High intake of these nutrients 

was associated with a reduced genetic risk for carriers of CFH risk variants (P trend = 0.05) (Figure 1).15

Supplementation of lutein/zeaxanthin

A number of small studies have investigated this topic. Some studied the retina of healthy subjects 

who received supplementation of lutein and/or zeaxanthin, with or without meso-zeaxanthin. After 

duration of 8-52 weeks, the macular pigment optical density (MPOD) was significantly higher than 

at baseline.23 Consumption of lutein/zeaxanthin rich foods like egg yolks or spinach improved serum 

lutein and zeaxanthin levels significantly. MPOD did improve in all groups, but only significantly in 

those with low MPOD at baseline and consumption of 4 egg/yolks per day.25,26
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FIGURE 1 - Gene-environment interactions in the Rotterdam Study

A - D. Joint effect of dietary nutrient intake and CFH Y402H genotype on the risk of Early AMD;

E – F. Joint effect of dietary nutrient intake and LOC387715 (ARMS2) A69S genotype on the risk of Early AMD.

R is the common reference group.

HRs are estimates of the relative risk of Early AMD, and represent the risk of disease (Early AMD vs No AMD) 

in the various genetic-environmental risk groups divided by the risk of disease (Early AMD vs No AMD) in the 

common reference group (R). HRs are estimated with Cox regression analyses and included age, sex, smoking 

status, and atherosclerosis.
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When lutein or lutein/zeaxanthin were supplemented in participants with early or even advanced 

AMD, these studies reported improvement of visual functions (e.g. visual acuity and contrast 

sensitivity), increase in serum lutein and zeaxanthin levels, and MPOD.23,27 Since most carotenoids 

are lipid-soluble pigments, adding fatty acids to the oral supplementation could improve uptake 

of lutein/zeaxanthin in the gut. However, one study investigated this hypothesis and did not find 

a change of serum levels of lutein and zeaxanthin if omega-3 fatty acids were added to lutein/

zeaxanthin supplementation.28

Only one randomized controlled trial compared supplementation of zeaxanthin (8 mg) to 

supplementation of lutein (9 mg), and to supplementation of zeaxanthin (8 mg) and lutein (9 

mg) combined, versus placebo. MPOD was elevated in all supplementation groups, but was only 

significant in the groups supplemented with zeaxanthin or lutein alone. Zeaxanthin improved foveal 

cone-based visual parameters, while lutein enhanced those associated with gross detailed rod-based 

vision. In the lutein/zeaxanthin group, the two carotenoids were dosed equally rather than 10:1-2 

which is the natural ratio. This may have led to duodenal, hepatic-lipoprotein or retinal competition 

between these nutrients, prohibiting efficient uptake and activity. 29

Several design issues of the studies should be discussed. The majority of the studies on advanced 

cases of AMD investigated geographic atrophy (GA) and focused on visual acuity as the outcome 

event. An outcome as enlargement of surface area of the atrophic lesions would have been more 

objective. Another issue is the size of the studies. Most case-series and trials were very small (N= 

5-136 participants). Contrary to other nutrients, there is no recommended daily allowance or upper 

level of intake (Table 2) for lutein/zeaxanthin, and harmful effects with unnatural high dosages are 

currently unknown.

Lycopene

This carotene can be found in tomatoes and other red vegetables (Table 1); it has no retinal activity. 

In most studies, dietary intake of lycopene was not associated with early or advanced AMD.5,9,10 

However, Morris et al. (2007) did find a trend for lycopene and pigmentary abnormalities; a history of 

higher intake of lycopene decreased the risk of pigmentary abnormalities (P trend = 0.02).

Serum levels of lycopene were inversely correlated with early and advanced AMD (RR 0.49; 95% CI 

0.28-0.86 and RR 0.22; 95% CI 0.1-0.48 respectively).8 A few small serum studies reported similar 

results for early, late and any AMD.20,21,30

TRACE ELEMENTS

Trace elements are dietary minerals and are needed in small amounts for normal cell function. Often 

a trace element is the core of enzymes. However, in large amounts trace elements are toxic.

Zinc

The retina contains high amounts of zinc suggesting a crucial role for this trace element. 31 Zinc has 

antioxidant functions and also acts as a cofactor in several enzymes including retinol dehydrogenase, 

an important enzyme in the vitamin A visual cycle.
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Dietary zinc

Several observational studies have investigated the role of dietary zinc and early AMD. Two studies 

reported an inverse trend for dietary and supplementary intake of zinc approximately ten years 

before ophthalmic examination and pigmentary abnormalities.6,7 However, no association was found 

for early AMD (OR 0.91; 95% CI 0.74-1.11). A significant interaction was found between dietary zinc 

intake and the major susceptibility genes: CFH (Y402H) and AMRS2 (A69S), respectively. Carriers of 

risk variants had a higher risk of AMD in the lower tertile of zinc intake, but risks lowered dramatically 

when intakes increased (Figure 1).15

Supplementation of zinc

Zinc supplementation had an inverse effect on developing advanced AMD in participants with 

signs of early AMD in a meta-analysis (OR 0.73; 95% CI 0.58-0.93). Zinc was supplemented as zinc 

oxide (80mg/day; together with cupric oxide, 2 mg/day) in the Age-related Eye Disease Study 

(AREDS) trial, and as zinc sulphate (200 mg/day) in the other trials. These dosages are highly above 

the recommended upper level of zinc intake (Table 2). 32 Zinc sulphate is the most common zinc 

salt in diet and supplements; zinc oxide has the longest history as a medicine, especially for skin 

irritations and wounds. Supplements versus AMD genotype appeared less significant than diet 

versus genotype. In the AREDS trial, non-carriers of CFH (Y402H) showed a more decreased risk after 

zinc supplementation than carriers, contradicting the findings with diet. 33

Zinc also has the capability to interact with the complement cascade, it is known to downregulate 

complement activation. Compliment activation is an established mechanism of AMD pathogenesis, 

hence, this explains the positive effect of high zinc intake. ARMS2 (A69S) may influence mitochondrial 

function leading to increased complement activation, which again can be counteracted by zinc.15 Zinc 

supplementation at high levels may lead to side effects and complications, including gastrointestinal 

symptoms, anemia and more severe genitourinary causes, therefore, caution is warranted.32,34

Selenium

Selenium has antioxidant and inflammatory capacities and has therefore been investigated in 

AMD. No positive associations have been found. 35 Selenium has been supplemented, but always in 

combination with other antioxidants, prohibiting the study of the single effect.

VITAMINS

Historically, all vitamins were thought to be amines, hence, in 1921 Kazimierz Funk put together the 

words ‘vital’ and ‘amine’, and composed ‘vitamine’. Vitamins are needed only in limited amounts.

Vitamin A

This fat-soluble vitamin was discovered in the beginning of the 20th century in butterfat, and it 

appeared to be associated with yellow-plant pigments, the carotenoids. Later, vitamin A was 

found in the retinal tissue of rats, and was named ‘retinol’ after the retina.36 Total vitamin A includes 

carotenoids, originating from plants, as well as retinol, derived from animals. Foods containing high 

levels of retinol are liver and butter (Table 1). Carotenoids have been discussed earlier in this chapter.

The influence of vitamin A on ophthalmological health has long been known; a vitamin A deficient 

diet leads to diseases of the cornea, i.e., xerolphthalmia and keratomalacia, and also to diseases of 

the retina causing nyctalopia and hemeralopia. Retinal, the active form of retinol, bonds with ‘opsine’ 

to form ‘rhodopsine’, the photosensitive molecule of rod photoreceptors. Aside from the visual 
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function, vitamin A is also needed for growth, survival, and immunity. Supplementation of vitamin 

A has been investigated since the 1920s and has been associated with a reduction of mortality and 

morbidity in different infectious diseases. 37,38

Total vitamin A and retinol

Goldberg et al (1988) investigated the data from NHANES-I and suggested a negative association 

between dietary vitamin A and AMD (P trend = 0.058). Since then vitamin A has been investigated by 

others. A meta-analysis included three prospective cohort studies and could not find an association 

of dietary vitamin A intake and incident early AMD (OR 0.98; 95% CI 0.81-1.18).5 Nevertheless, total 

vitamin A intake including supplement use appeared to be associated with a decrease of pigmentary 

abnormalities (P trend = 0.01).7

For advanced AMD, a trend for total vitamin A intake without supplements was found in a case 

control study (P trend = 0.05).10 Inclusion of supplement use increased the association (P trend = 

0.02). In this study, retinol per se did not have a significant effect. In the AREDS study, dietary Vitamin 

A intake including retinol had a beneficial effect on advanced AMD.9

Vitamin C

L-ascorbid acid, or vitamin C, is a powerful water-soluble antioxidant. Most mammals can synthesize 

vitamin C from glucose in their liver, except for some species like humans. These species lack the 

enzyme gulonolactone oxidase; as a consequence, diet is their only source for vitamin C. When diet 

does not include vitamin C, this can lead to scurvy, a lethal condition if not treated appropriately. 

Thus, vitamin C is needed to survive.39

Vitamin C may play a role in the pathogenesis of AMD. This potent antioxidant could potentially 

inhibit cellular damage from free radicals provoked by ultraviolet exposure in the retina. This 

hypothesis has been tested in many different study designs.

Dietary vitamin C

A meta-analysis has pooled the point estimates from four large, high quality cohort studies. The 

meta-analysis results, just like the single study results, showed no association vitamin C with incident 

early AMD (OR 1.11; 95% CI 0.84-1.46). No meta-analysis was carried out for advanced AMD, since not 

every study had investigated advanced AMD. Those studies that did, did not find an association of 

vitamin C with incident advanced AMD.5 A case-control study found a trend for intake of vitamin C 

versus a lower risk of neovascular AMD (P trend = 0.03).10

Supplementation of vitamin C

There are almost no studies which investigated vitamin C as the only supplement use. Most studies 

combined vitamin C together with other antioxidants.34 Recently, findings from a randomized 

double-masked, placebo-controlled trial showed that there was no association of 500 mg vitamin C 

supplementation with incident AMD (Hazard Ratio (HR), 0.99; 95% CI 0.75-1.31).40 Supplementation 

of vitamin C mostly included 500 mg. Experiments have shown that plasma of subjects is saturated 

at doses of 400 mg daily.39 Increasing the administered dose will probably provide the same results.

In conclusion, no strong association with AMD has been found for vitamin C, nor in diet, nor as 

supplementation.
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Vitamin D

Vitamin D does not only play a role in bone mineralization, but also has anti-inflammatory and 

antiangiogenic properties.41 Hence, a role for vitamin D has been suggested.

There are different forms of vitamin D. The two main forms are vitamin D2 (ergocalciferol) and 

vitamin D3 (cholecalciferol), which only differ from each other by one methyl-group.42,43 Vitamin D2 

is a plant-derived form and can be produced through ultraviolet exposure of foods. A food source 

naturally rich in vitamin D3 is fatty fish (Table 1).42 Diet, however, only contributes 10% of total 

serum level of vitamin D.44 The majority of vitamin D3 is from endogenous produced vitamin D3, 

which is synthesized in the skin under influence of ultraviolet light of the sun. In the liver, vitamin 

D3 is hydroxylated into 25-hydroxyvitamin D3 (25(OH)D), and in the kidney, it is hydroxylated to 

1,25-dihydroxyvitamin D3 (1,25(OH)D), the active metabolite of vitamin D.42

Several studies investigated the role of vitamin D with any form of AMD, as well as early and advanced 

AMD, and studied the nutrient intake as sunlight exposure, serum levels 25(OH)D, and intake of 

vitamin D via diet or supplements.

Vitamin D through sunlight exposure

The majority of vitamin D is produced through sunlight exposure of the skin. This environmental 

factor has been analyzed since the beginning of AMD research, with contradicting results. The 

combination of a potential harmful effect by DNA damage as well as a beneficial effect through 

Vitamin D may be an explanation.

Serum levels 25(OH)D

Parekh et al. (2007) was the first to report an association of serum levels of 25(OH)D with AMD in 

white non-Hispanics. The three highest quintiles of serum level 25(OH)D were inversely associated 

with early AMD after adjustment for age and serum cotinine, a biomarker for exposure to tobacco (P 

trend = 0.003).41 Among non-Hispanic Blacks and Mexican American individuals a similar, albeit non-

significant, effect was found. This study also analyzed the different characteristics of early AMD, soft 

drusen and pigmentary changes on the entire population. Soft drusen, but not pigmentary changes 

were associated with 25(OH)D serum levels; P trend = 0.006 and 0.40 respectively. An association 

with advanced AMD was not found, most likely due to the small number of advanced cases.

An inverse association of 25(OH)D levels with early AMD, but not with advanced AMD, was found in 

postmenopausal women < 75yrs (P trend = 0.01).44

A few studies have analyzed hypovitaminosis D as a marker for AMD. No associations within these 

analysis has been found for neovascular AMD 45, but a significant association was reported for 

hypovitaminosis with any form of AMD.46 Serum level of 25(OH)D lower than 50nmol/L increased 

the risk of AMD 3 times (OR 3.03; 95% CI 1.04-8.80). Although interesting, these results need to be 

interpreted carefully since the number of cases and controls was small (N=65), and the study has not 

yet been replicated.

Dietary vitamin D

 A positive association with decreased intake was found by a twin study, which selected 28 discordant 

twin pairs: one twin was diagnosed with advanced AMD; the other twin had no or only signs of early 

AMD. Vitamin D intake appeared significantly higher in twins with no or only early AMD (P = 0.048).47 

In some countries, dairy products are enriched with vitamin D, such as liquid milk in the United States 
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of America. One study showed that milk consumption was positively correlated with serum vitamin 

D levels (Pearson correlation coefficient, 0.2; P<0.001), and more than weekly milk consumption was 

associated with lower odds for early AMD. But only soft drusen were significantly inversely associated 

with the consumption of milk. No association of advanced AMD with milk consumption was found.41 

Fatty fish is another food which is rich in vitamin D, and this may also attribute to the protective effect 

that has been found for fatty fish.48,49

Supplementation of vitamin D

Results of supplement use are inconclusive.41,44 Most supplements contain vitamin D2, which is almost 

ten times less active than vitamin D3.43 This may explain the difficulty in finding a strong association. 

Parekh et al. (2007) did not find an association in the total population, but, after excluding those with 

high intake due to milk consumption, he did. To disentangle the effects, it would have been more 

interesting if he analyzed the use of vitamin D supplements in the population not consuming any 

milk.

Vitamin E

Vitamin E refers to a group of tocopherols and tocotrienols, of which the former is the most profuse 

form in nature and has the highest biological activity. Vitamin E deficiency therefore mainly refers to 

α-tocopherol. Vitamin E is a fat-soluble chain-breaking antioxidant, and may protect the retina from 

damage caused by free-radicals. High levels of this nutrient can be found in corn and soybean oil 

(Table 1).50

Plasma levels α-tocopherol

In the POLA study, no significant association was found between plasma levels of α-tocopherol and 

advanced AMD (P = 0.08). When α-tocopherol plasma levels were standardized to plasma lipids like 

cholesterol and triglycerides, the ratio was negatively associated with advanced AMD (P=0.004). The 

ratio was also associated with any signs of early AMD, drusen or pigmentary changes, in subjects free 

of advanced AMD (P=0.04). All associations were adjusted for potential confounding factors.51

Dietary vitamin E

Several prospective cohort studies have investigated the role of dietary vitamin E and the risk of 

developing AMD. Of these studies, three were of high quality and results were pooled quantitatively 

using meta-analytic methods. An almost significant association was found for vitamin E and incident 

early AMD (OR 0.83; 95% CI 0.69-1.01).5 For advanced AMD, an association was found in the long-

term follow-up of one study; higher intakes of total vitamin E (including supplement use) predicted 

advanced AMD. 11 This was not confirmed by the other studies.

Supplementation of vitamin E

Recently, a meta-analysis was published concerning three large trials supplementing vitamin E to 

healthy subjects.12 Vitamin E had been supplemented in different dosages of α-tocopherol, 50-402 

mg = 75-600IU versus placebo for 4-10 years. The complete sample consisted of 40,887 participants 

of which 20,438 had received α-tocopherol supplementation; 20,449 had been assigned to placebo. 

In the supplemented group, 405 individuals developed early AMD, and 42 advanced AMD. In the 

placebo group, 458 progressed to early AMD; 31 to advanced AMD. Thus, no associations were found 

(any type of AMD RR 0.98; 95% CI 0.89-1.08; advanced AMD RR 1.05; 95% CI 0.80-1.39).
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Many studies have investigated the role of vitamin E in chronic diseases. High-dose vitamin E 

supplements (≥ 268 mg=400 IU) have been linked to an increased risk of heart failure in people 

with vascular disease and diabetes. Supplements given in these trials were up to 15-fold higher 

than the maximum dietary intake in the cohort studies. Since a protective effect against AMD is 

dubious for vitamin E,52 extra care should be taken not to prescribe supplementation to those with 

cardiovascular risk factors.

LIPIDS

Almost 20% of the dry weight of the retina is accountable to lipids. Over half of all the retinal fatty 

acids are unsaturated; the majority of these are polyunsaturated fatty acids (PUFAs). Docosahexaenoic 

acid (DHA) is a PUFA which can be found in the photoreceptor outer segments, and which has been 

shown to be a survival factor for photoreceptors. The high concentrations of this lipid in the retina 

and its anti-inflammatory properties 53 suggests a potential role for omega-3 fatty acids in retinal 

disease.

Dietary intake lipids

Reported outcomes of dietary omega-3 fatty acids, fish consumption (rich of omega-3 fatty acids) 

and nut consumption have all been shown to be protective against early and late AMD.53 A meta-

analysis showed an inverse effect of high intake of omega-3 fatty acids and late AMD (OR 0.62; 95% 

CI 0.48-0.82).54 In contrast to omega-3 fat, high levels of trans-fat may potentially increase the risk of 

AMD, but consistent evidence on this notion is lacking.53

A large multi-centered case-control study found a link between the positive effect of omega-3 fatty 

acids and linolic acid, an omega-6 fatty acid. The beneficial effect of high intake of omega-3 fatty 

acids was particularly found in persons with a low intake of linolic acid.55 Similar results have been 

described for fish intake.48 This indicates that the ratio of omega-6/omega-3 fatty acids needs to be 

of the right balance. The most ideal ratio is 3:1 or 4:1, while in reality this is 10-50:1 for the average 

American.56

Interaction between AMD genes and intake of DHA and the other omega-3 lipid, eicopentaenoic 

acid (EPA), was studied in the Rotterdam Study. Homozygous carriers of the CFH variant Y402H could 

lower their risk of developing early AMD with high intake of DHA/EPA (P trend = 0.03). A same effect 

was found for carriers of the risk variant ARMS2 A69S (P trend= 0.01).

A similar effect was found for fish intake and CFH Y402H carriers. Weekly consumption of fish was 

associated with reduced risk of late AMD for carriers of the risk variant.49

Supplementation of omega-3 fatty acids

Very little is known on supplementation of omega-3 fatty acids as a single nutrient and AMD. A pilot 

trial was carried out in 38 patients with drusenoid pigment epithelial detachment in one eye, and 

the effect of oral supplementation with EPA 720mg/day and DHA 480 mg day was compared to 

no treatment (control group). After 6 months of supplementation, a significant increase of serum 

levels and red blood cell membranes of EPA and DHA was found, while no change was found in 

the control group. Since no exudative AMD occurred during the short follow up time, no inferences 

on supplementation of EPA/DHA can be made.57 Before long, the results of the AREDS2 trial are 

expected. In this trial the supplementation of lutein/zeaxanthin and/or omega-3 fatty acids and the 

risk of advanced AMD are being studied.58
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EPIGENETICS AND NUTRIENTS

Epigenetics refers to functional changes of the genome without a change in DNA nucleotide 

sequence. This could explain phenotypical differences in diseased monozygotic twins.59 Various 

nutrients may cause epigenetic changes. Among those reported to have this capacity, betaine (a 

choline derivate) and methionine have been associated with advanced AMD.47 In the US Twin Study 

of Age-Related Macular Degeneration, Seddon et al. (2011) found high dietary intake of betaine to 

be inversely associated with grade of AMD (P = 0.009; adjusted for age, smoking and differences 

between twins), but not with drusen size, drusen area or pigment area. She found an inverse 

association for dietary methionine and drusen area (P =0.033; but not with AMD grade, drusen size 

or pigment area. There was no significant association for dietary choline intake with the macular 

phenotype.

Betaine, choline, methionine and homocysteine are involved in the one-carbon metabolism pathway, 

which occurs in DNA methylation. Choline is oxidized to betaine, which, together with homocysteine, 

will produce methionine under the influence of vitamin B12. Methionine is an essential amino acid 

for DNA methylation.59 Dietary choline, betaine and methionine influence DNA methylation; higher 

intakes of choline and betaine showed lower plasma levels of homocysteine, and a reduction of 

inflammatory markers in serum.59,60 Higher levels of homocysteine or inflammatory markers were 

found to be risk factors for AMD.47 Further studies are needed to confirm these associations with 

AMD.

RESVERATROL

Resveratrol is a natural phenol produced by plants which may have anticancer and anti-inflammatory 

effects. It can be found in the skin of red grapes, and is also present in red wine, although in very low 

concentrations. Experiments have indicated that resveratrol may protect retinal pigment epithelial 

cells from oxidative stress in culture.61 This nutrient could have a beneficial effect on eye health 

and help protecting the macula against AMD. We are not aware of any ongoing trials investigating 

resveratrol supplementation and AMD.

SUPPLEMENTATION WITH COMBINED NUTRIENTS

Many nutrients have been supplemented together, making it impossible to investigate the role 

of the individual nutrients and risk of AMD. Studies supplemented different combinations and 

dosages, further hampering comparison. Nevertheless, it appears that supplementation of several 

nutrients combined can be beneficial; they could enforce each other. In the AREDS trial, a double-

masker clinical trial, participants were randomly subscribed to oral use of (1) antioxidant (vitamin C 

500 mg; vitamin E 400 IU; ß-carotene 15 mg), (2) zinc (zinc oxide 80 mg and cupric oxide 2 mg), (3) 

antioxidants plus zinc or (4) placebo. Estimates of RR show that those who were taking antioxidant 

and zinc had a 25% risk reduction of advanced AMD, while the groups that were taking antioxidant 

alone or zinc alone had a reduction of 17% and 21%, respectively.34

However, the more the merrier does not account for al nutrients. Nutrients that are alike mostly use 

the same uptake and transportation routes throughout the body. High levels of supplementation 

could then lead to competition between these nutrients, and this could even lead to deficiencies. An 

example of this is cupper deficiency caused by increased zinc consumption.32,34
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CONCLUSION

Nutrients and AMD have been widely studied. Not all prior questions have been answered, and 

new questions have already been launched. Nonetheless, from the current findings we conclude 

that a healthy diet for instance, as recommended by the United States Department of Agriculture 

in the food pyramid may help lower the risk of AMD with a special focus on carotenoids (lutein, 

zeaxanthin, lycopene), zinc, and omega-3 fatty acids (Table 3; Figure 2). Less firmly established, but 

also promising, appear a high intake of vitamin D and nutrients influencing epigenetics. Beneficial 

effects may be particularly present in those carrying a genetic risk of AMD.

A word of concern is at place. We need to keep in mind that the nutrients mentioned in this chapter 

are generally not consumed as single items, but accompanied by other nutrients. Furthermore, a 

healthy diet is correlated with other lifestyle factors, which makes it difficult to interpret the positive 

effect of a healthy diet by itself.

TABLE 3 - Overview of nutrients and risk of AMD 

Nutrient

Early 

AMD

Late 

AMD References

Astaxanthin NA NA

Betaine NA ? Seddon et al. 2011

α Carotene ~ ? Chong et al. 2007; Zhou et al. 2011

β Carotene ? ~ Chong et al. 2007; Evans 2012; Ho et al. 2011

β Cryptoxanthin ~ ~ Seddon et al. 1994; Chong et al. 2007

Lutein/zeaxanthin Ma et al. 2012; Sabour-Pickett et al. 2012

Lycopene Mares-Perlman et al. 1995 Simonelli et al. 2002; Cardinault et al. 2005; Morris et al. 

2007

Methionine NA ? Seddon et al. 2011

Omega-3 fatty acids Chong et al. 2008; Kishan et al. 2011

Omega-6 fatty acids NA ? Kishan et al. 2011

Resveratrol NA NA

Selenium NA NA

Vitamin A (total) ~ ? Seddon et al.1994; Chong et al. 2007; San Giovanni et al. 2007

Vitamin A (retinol) ~ ~ Seddon et al. 1994; San Giovanni et al. 2007

Vitamin C ~ ? Seddon et al. 1994; Chong et al. 2007

Vitamin D ? ? Parekh et al. 2007; Millen et al. 2011; Seddon et al. 2011; Graffe et al. 2012

Vitamin E* ~ ~ Chong et al. 2007; Evans 2012

Zinc ? Chong et al. 2007; Evans 2008; Ho et al. 2011

* There are many different forms of vitamin E, the most common is α-tocopherol

 lowering

? possible lowering

~ questionable

? possible increase

 increase

NA Not able; no results available
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2 times per day

Limited intake

0-2 times per day

Butter

Dairy products: milk, cheese 
etc. or soy products

Poultry, eggs

Nuts, seeds, beans, lentils
1-3 times a day

Vegetables
Unlimited; At least 200 g/day 2-3 times a day

Fruits

Rice, potatoes, whole cereal products; bread, pasta

Vegetable oils

Every day, small amounts

Every meal

Fatty Fish
2 times per week

Red meat

FIGURE 2 - Nutritional advice for lowering risk on AMD

This food pyramid gives a nutritional advice for lowering risk on AMD. All the foods in bold contain nutrients 

which have been associated with a lower risk on developing AMD.

Take-home messages

• Vitamins and minerals are essential for normal retinal physiology. Supplementation of these 

nutrients mostly has a dosage outside the recommended daily allowance, and therefore should 

be prescribed with thought.

• We consume foods, not nutrients.

• Dietary intake of carotenoids (lutein, zeaxanthin, lycopene) zinc and omega-3 fatty acids can 

help lower the risk of AMD

• Supplementation of lutein, zeaxanthin and zinc can help lower the risk of AMD.

• Vitamin D and nutrients influencing epigenetics are promising new topics for more in-depth 

research.

• Those at genetic risk should be made aware of their potential to lower the risk of AMD through 

diet.
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ABSTRACT

Background In animal models, lack of thyroid hormone is associated with cone photoreceptor 

preservation while administration of high doses of active thyroid hormone leads to deterioration. 

The association between thyroid function and age-related macular degeneration (AMD) has not 

been investigated in the general population.

Methods Participants ≥55 years from the Rotterdam Study with thyroid-stimulating hormone (TSH) 

and/or free thyroxine (FT4) measurements and AMD assessment were included. We conducted 

age- and sex-adjusted Cox-proportional-hazards models to explore the association of TSH or FT4 

with AMD, in the full range and in those with TSH (0.4-4.0 mIU/L) and/or FT4 in normal range (11-

25 pmol/L). Cox-proportional-hazards models were performed for the association of TSH or FT4 

with Retinal Pigment Alterations (RPA), as an early marker of retinal changes. Multivariable models 

additionally included cardiovascular risk factors and thyroid peroxidase antibodies positivity. We also 

performed stratification by age and sex. A bidirectional look-up in Genome-Wide Association Studies 

(GWAS) data for thyroid parameters and AMD was performed. Single Nucleotide Polymorphisms 

(SNPs) that are significantly associated with both phenotypes were identified.

Results We included 5573 participants with a median follow-up of 6.9 years (interquartile range 

4.4-10.8 years). During follow-up 805 people developed AMD. TSH levels were not associated with 

increased risk of AMD. Within normal range of FT4, participants in the highest FT4 quintile had a 

1.34-fold increased risk of developing AMD, compared to individuals in the middle group (95% 

confidence interval [CI] 1.07-1.66). Higher FT4 values in the full range were associated with a 

higher risk of AMD (Hazard Ratio 1.04, CI, 1.01-1.06 per 1 pmol/L increase). Higher FT4 levels were 

similarly associated with a higher risk of RPA. Restricting analyses to euthyroid individuals, additional 

multivariable models and stratification did not change estimates. We found a SNP (rs943080) in the 

VEGF-A gene, associated with AMD, to be significant in the TSH GWAS (p=1.2x10-4). Adding this SNP 

to multivariable models did not change estimates.

Conclusion Higher FT4 values are associated with increased risk of AMD -even in euthyroid 

individuals- and increased risk of RPA. Our data suggest an important role of thyroid hormone in 

pathways leading to AMD.
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BACKGROUND

Age-related macular degeneration (AMD) is a disease of the retina in the elderly which can 

lead to irreversible blindness and is characterized by drusen, pigmentary changes, choroidal 

neovascularization and geographic atrophy. While AMD is one of the leading causes of visual 

impairment worldwide and increasing in prevalence 1-7, the exact pathophysiology and pathways 

leading to AMD are not entirely understood.

Thyroid hormones are known to regulate various visual functions in experimental and human 

studies 8-10. Human retinal pigment epithelial (RPE) cells express thyroid hormone receptors and 

seem to be a direct target for thyroid hormones 11. Recently it has been shown that suppression 

of thyroid hormone signaling resulted in preservation of cone photoreceptors in mouse models of 

retinal degeneration 12. In contrast, administration of active thyroid hormone leads to deterioration 

of cones. Thyroid dysfunction and subclinical thyroid dysfunction are common in the general 

population, with a prevalence up to 10% 13-16. These thyroid disorders are associated with various 

cardiovascular risk factors, including alterations in lipid levels, atherosclerosis and hypertension 17-19, 

which are known predisposing factors for development and progression of AMD 20,21. However, there 

are no studies in the general population assessing the association between thyroid function and the 

risk of AMD. Therefore, we aimed to assess the relation between thyroid-stimulation hormone (TSH), 

free thyroxine (FT4) and the risk of incident AMD in a prospective population-based cohort study and 

to study possible underlying genetic pathways through investigating an overlap in genome-wide 

significant hits (i.e. bidirectional genetic look-up).

METHODS

The Rotterdam Study

The Rotterdam Study is a prospective population-based cohort study that addresses determinants 

and occurrence of cardiovascular, neurological, ophthalmologic, psychiatric, and endocrine 

diseases in the elderly living in Ommoord, a suburb of Rotterdam. The aims and design of the 

Rotterdam study have been described elaborately elsewhere 22. For this analysis we included 

participants from two independent cohorts from the Rotterdam Study. The Rotterdam Study 

Cohort I (RSI) started in 1989 and included a total of 7,983 participants (response rate 78 

percent) aged 55 years and older. Baseline data were collected from 1990 until 1993 and four 

follow-up examinations were performed in 1993-1995, 1997-1999, 2002-2004 and 2009-2011. 

The second cohort is the Rotterdam Study Cohort II (RSII) and includes a total of 3,011 participants 

(response rate 67 percent) aged 55 years and older. Baseline data were collected from 2000-2001 and 

follow-up examinations were performed in 2004-2005 and 2011-2012.

Study Population

Participants from baseline study cohorts RSI (RSI-1) and RSII (RSII-1) were eligible for these analyses 

if they had TSH and/or FT4 measurements and had gradable fundus photographs at baseline and at 

least one follow-up eye examination. Since not all participants from RSI had thyroid measurements 

at baseline, additional baseline samples were drawn from RSI visit 3 (RSI-3). Participants with AMD 

at baseline (N=567) were excluded from further analyses. In total 5573 participants from these two 

cohorts were eligible to be included in our analyses (Supplementary Figure 1). The Medical Ethics 

Committee of the Erasmus University had approved the study protocols, and participants had given 

a written informed consent in accordance with the Declaration of Helsinki.
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Assessment of thyroid function

For RSI-1, serum TSH (TSH Lumitest; Henning, Berlin, Germany), anti-TPOAb (ELISA; Milenia; 

Diagnostic Products Corp, Los Angeles, CA, USA) and free T4 levels (FT4; Vitros, ECI Immunodiagnostic 

System; Ortho-Clinical Diagnostics, Amersham, UK) were determined in a random subset of the 

baseline serum samples (n=1855). Thyroid function assessment was also performed in baseline 

serum samples for TSH and FT4 (The electrochemiluminescence immunoassay for thyroxine and 

thyrotropine, “ECLIA”, Roche) for RSI-3 and RSII-1. The tests’ TSH reference ranges did not differ 

substantially and had a good Spearman correlation co-efficient (0.96 for TSH, p < 0.0001and 0.81 for 

FT4, p < 0.0001). We determined the cut-off values for normal range TSH as 0.4-4.0 mIU/L according 

to national guidelines. The reference range for FT4 was 11-25 pmol/L and anti-TPOAb levels greater 

than 60 kU/mL were regarded as positive.

Diagnosis of age-related macular degeneration

All eligible participants underwent fundus photography after pharmacologic mydriasis. For visits RSI-

1 to RSI-3 and RSII-1 a 35° film fundus camera was used (Topcon TRV-50VT, Topcon Optical Company, 

Tokyo, Japan) after which a 35° digital color fundus camera (Topcon TRC-50EX, Topcon Optical 

Company, Tokyo, Japan with a Sony DXC-950P digital camera; 0.44 megapixel, Sony Corporation, 

Tokyo, Japan) followed for visits RSI-4, RSI-5, RSII-2 and RSII-3. Fundus transparencies were graded 

according to the Wisconsin Age-Related Maculopathy Grading 23 and the modified International 

Classification System 24 by trained graders under the supervision of senior retinal specialists ( J.R.V., 

C.C.W.K.). The eyes of each participant were graded and classified separately, and the eye with the 

more severe grade was used to classify the person. In the analyses incident early and late AMD 

combined was used as outcome variable. In the manuscript this is referred to as AMD. Besides AMD 

we also investigated AMD specific lesions as a separate outcome variable. These lesions included 

retinal pigmentary alterations, large drusen (≥125μm) and large drusen area (≥ 5331,820 μm2) 25.

Baseline measurements

Smoking was derived from computerized baseline questionnaires and categorized in current or 

non-current smokers. Blood pressure, systolic and diastolic, was calculated as the average of two 

consecutive measurements, using random-zero mercury sphygmomanometers. Hypertension was 

defined as having a systolic blood pressure ≥ 140 mmHg or a diastolic blood pressure ≥ 90mmHg 

or using anti-hypertensive medication at baseline. Cholesterol was measured at baseline by the 

CKCL (Centra Clinical Chemical Laboratory) of the Erasmus University Medical Center. A subgroup of 

measurements was carried out in the laboratory of the Department of Epidemiology & Biostatistics 

(Erasmus University Medical School). History of diabetes was defined by a repeated impaired fasting 

glucose ≥ 7 or use of anti-glycemic medication at baseline. Body-mass index (BMI) was calculated as 

weight kilograms divided by height squared in meters.

Statistical analysis

Participant baseline characteristics were compared using a χ2 or t-test. Due to a skewed distribution, 

TSH was log-transformed for the statistical analyses. We used cox-proportional hazards model 

to calculate the relationship between TSH and FT4 at baseline and the risk of incident AMD, first 

including all participants and then including only those with normal range TSH and/or FT4 values. 

We performed a crude cox-model including only thyroid parameters after which we also included 

quadratic and cubic terms to explore possible non-linear relationships. We then performed 

additional models adjusting first for age and sex and second also adding smoking, hypertension, 

cholesterol, diabetes and BMI to the model. Hypertension, cholesterol, diabetes and BMI could act as 
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confounders and possible mediators depending on the presumed pathway through which thyroid 

function is related to AMD. These variables were included in the multivariable model as possible 

confounders of non-vascular pathways. We looked at the association between AMD and TSH or FT4 

both continuously and in quintiles, as well as overall and within the normal range of TSH. The middle 

quintile was used as reference group as biologically it is expected to represent the subgroup with 

the most thyroid function within the euthyroid group. We performed pre-defined stratification by 

sex and age categories, using a cutoff 65 years as this is the median of the current population and 

the treatment threshold for subclinical thyroid dysfunction according to the European guidelines26. 

Further interaction terms were introduced to the model to explore possible differential risk 

patterns. We performed a sensitivity analysis excluding those using thyroid medication at baseline 

(levothyroxine and anti-thyroid drugs) and those with prior self-reported thyroid disease at baseline. 

We also performed FT4 and TSH analyses with specific AMD lesions defined as retinal pigment 

alteration, large drusen and large drusen area as separate outcome variable to examine possible 

early changes in underlying pathways. To address the issue of drop-out of individuals during follow-

up that could possibly be not completely at random, we adjusted the model for inverse probability 

weights (IPW”s). These were calculated using possible baseline explanatory variables for drop-out 

such as smoking, BMI and medication use. Proportional hazards assumption was checked statistically 

using the Schoenfeld test and assessing the Schoenfeld plot. All statistical analyses were performed 

using SPSS version 21 (SPSS IBM, New York, U.S.A) except for the Schoenfeld tests and (Schoenfeld) 

plots which were performed in R (survival package, R-project, Institute for Statistics and Mathematics, 

R Core Team (2013), Vienna, Austria, version 3.0.2).

Bidirectional genetic look-up

Genome-Wide Association Studies (GWAS) have been performed for AMD 27 and thyroid function (TSH 

and FT4) 28,29. These studies identified several single-nucleotide polymorphisms (SNPs) associated to 

these two phenotypes. Some of the genome-wide significant SNPs in the AMD GWAS might also 

play a role in thyroid function and vice versa. Overlap between common genetic polymorphisms 

can provide insight into possible shared genetic pathways. It might also elucidate a mediation effect 

between the two phenotypes, i.e. identify and explicate the process that underlies a possible observed 

relationship between thyroid function and AMD. To evaluate these potential genetic pathways, we 

conducted a bidirectional genetic look-up using the results of the above mentioned GWA Studies 

for AMD and thyroid function. We first extracted SNPs that reached genome-wide significance from 

the AMD GWAS performed by the AMD Gene consortium 27. We then checked whether these were 

significantly associated with TSH or FT4 in the thyroid function GWAS performed by Porcu et al. 28. 

Hereafter we extracted the genome-wide significant SNPs for TSH or FT4 from the thyroid function 

GWAS and checked whether they were associated with AMD in the AMD GWAS. For the significance 

level, we applied a multiple testing correction (Bonferroni Correction), using a p-value threshold of 

0.05 divided by the amount of significant SNPs per GWAS. In case of a significant finding, we added 

the SNP to the multivariable model to evaluate a possible mediation effect.

RESULTS

We included 5573 participants with TSH and/or FT4 measurements at baseline and incident AMD 

data, with a median follow-up of 6.9 years (interquartile range [IQR] range of 4.4-10.8 years). Of these, 

5572 had TSH and 5504 had FT4 baseline measurements. A total of 805 people developed AMD 
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(Early AMD N=725, Late AMD N=80) during follow-up with an incidence rate of 18 per 1000 person-

years. The baseline characteristics for those with and without incident AMD during follow-up were 

comparable, except for proportion of diabetes (Table 1).

TABLE 1 - Baseline Characteristics of Included Participants from the Rotterdam Study Evaluating the Association 

between Thyroid Function and AMD* 

Variable 

No incident AMD

N=4768

Incident AMD

N=805 P-value**

Age, years 67.6 (7.6) 67.9 (7.1) 0.29

Sex % female 57.6 57.8 0.94

History of Diabetes % 10.8 8.4 0.04

BMI kg/m2 26.9 (3.9) 26.6 (3.7) 0.07

Cholesterol mmol/L 6.1 (1.2) 6.1 (1.1) 0.23

Smoking % current 20.7 21.0 0.85

Hypertension % 63.0 58.7 0.17

TSH mIU/L median (IQR) 1.78 (1.15-2.69) 1.73 (1.17-2.67) 0.78

FT4 pmol/L 15.8 (2.6) 16.0 (3.2) 0.13

TPOAb kU/L 30.5 (95.1) 30.8 (96.2) 0.93

*Values are means and SD unless otherwise specified.

** For comparison a t-test was conducted, for TSH the log-transformed values were used.

Abbreviations: AMD = Age-related Macular Degeneration; BMI = body-mass index; TSH = thyroid-stimulating hormone, FT4 = 

free thyroxine; SD = Standard deviation; IQR = inter-quartile range; TPOAb = thyroid peroxidase antibodies.

Association between thyroid function and AMD

Although there was no association between TSH and AMD (hazard ratio [HR] 0.99; 95% confidence 

interval [CI] 0.91-1.07, Table 2), the risk of AMD was significantly increased in those with higher FT4 

levels (Table 2). When categorizing the FT4 values within normal range quintiles, those in the highest 

FT4 quintile had an increased risk compared to the middle group with a HR of 1.34 (95% CI, 1.07-1.66) 

and a non-significant p for interaction (p=0.066) (Table 2). This association remained similar after 

additional adjustments for smoking, diabetes, hypertension, cholesterol, BMI, and TPOAb positivity 

(Figure 1). This association also remained similar after analyzing only those within the normal range 

of TSH and FT4, that is, those with normal thyroid function.

Excluding those with thyroid medication or thyroid disease at baseline as a sensitivity analysis, did 

not alter the association (Table 3). Stratifying for age and sex did not reveal any significant differential 

risk (Supplementary Table 1). The association between thyroid function and retinal pigment 

alterations for FT4 showed similar significant hazard ratios, with the exception of the risk estimates 

when looking at FT4 only in the normal range of TSH (Table 4). TSH and FT4 were not associated with 

large drusen or large drusen area (data not shown). Introducing quadratic and cubic terms for TSH 

and FT4 to the crude model, as an exploration of non-linearity, did not improve model performance. 

Taking possible non-random follow-up using IPW’s did not change risk estimates. The proportional 

hazards assumption was checked statistically with the Schoenfeld test and Schoenfeld plot and met 

for both the TSH (p = 0.232) and FT4 (p = 0.154) analyses.
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TABLE 2 - Association between TSH, FT4 and risk of AMD 

Incident AMD vs no AMD AMD N Total N

HR (95% CI), 

model 1

HR (95% CI), 

model 2

HR (95% CI), 

model 3

TSH mIU/L 805 5572 0.99 (0.91-1.07) 0.99 (0.91-1.07) 0.99 (0.91-1.07)

TSH in normal rangea 696 4756 1.06 (0.91-1.23) 1.09 (0.93-1.27) 1.08 (0.93-1.26)

Normal range TSHa          

Q1 0.40-1.10 148 1082 1.04 (0.82-1.32) 1.00 (0.79-1.28) 1.00 (0.79-1.28)

Q2 1.11-1.54 167 990 1.32 (1.04-1.66) 1.29 (1.02-1.62) 1.29 (1.02-1.62)

Q3 1.55-1.99 128 962 1 1 1

Q4 2.00-2.61 117 851 1.09 (0.85-1.40) 1.07 (0.83-1.37) 1.07 (0.83-1.38)

Q5 2.62-3.97 136 871 1.22 (0.96-1.56) 1.22 (0.95-1.55) 1.21 (0.94-1.54)

P interaction     0.648 0.485 0.517

Total 696 4756      

FT4 pmol/L 791 5504 1.04 (1.01-1.06) 1.04 (1.01-1.06) 1.04 (1.01-1.06)

FT4 in normal rangeb 765 5382 1.04 (1.01-1.07) 1.04 (1.01-1.07) 1.04 (1.01-1.07)

Normal range FT4b          

Q1 11.0-14.0 149 1090 1.03 (0.82-1.29) 1.04 (0.82-1.31) 1.04 (0.82-1.31)

Q2 14.0-15.1 152 1001 1.12 (0.89-1.41) 1.17 (0.92-1.47) 1.16 (0.92-1.47)

Q3 15.1-16.2 144 1094 1 1 1

Q4 16.2-17.5 134 1060 1.01 (0.80-1.28) 1.03 (0.81-1.30) 1.03 (0.81-1.31)

Q5 17.5-24.9 186 1137 1.34 (1.07-1.66) 1.35 (1.08-1.69) 1.35 (1.09-1.69)

P interaction 765 5382 0.066 0.088 0.08

Normal range FT4b in normal range TSHa 673 4658 1.04 (1.01-1.08) 1.04 (1.01-1.08) 1.04 (1.01-1.07)

a normal range of TSH defined as 0.4-4.0 mIU/L.
b normal range of FT4 defined as 11-25 pmol/L.

Model 1: Adjusted for sex and age.

Model 2: Model 1 + smoking, hypertension, cholesterol, diabetes, BMI.

Model 3: Model 2 + thyroid peroxidase antibodies positivity.

Abbreviations: AMD Age-related Macular Degeneration ; BMI body-mass index; CI confidence interval; FT4 free T4; HR hazard 

ratio; Q quintile; TSH Thyroid-Stimulating Hormone.

FT4 pmol/L quintiles AMD N Total N
HR Ratio
(95% CI)a

11.0 - 14.0 149 1090 1.04 (0.82-1.31)

14.0 - 15.1 152 1001 1.16 (0.92-1.47)

15.1 - 16.2 144 1094 [REFERENCE]

16.2 - 17.5 134 1060 1.03 (0.81-1.31)

17.5 - 24.9 186 1137 1.35 (1.09-1.69)

Decreased risk          Increased risk

0.50 1.00 2.50

FIGURE 1 - Quintiles of FT4 within the normal range and risk of AMD.

The normal range of FT4 was defined as 11-25 pmol/L (Conversion 1 pmol/L=0.0777 ng/dL).

a Analyses were adjusted for sex, age, smoking, hypertension, cholesterol, diabetes, body-mass index and thyroid peroxidase 

antibodies positivity.

Abbreviations: AMD Age-related Macular Degeneration; FT4 free thyroxine; HR hazard ratio
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Bidirectional genetic look-up

In the thyroid function GWAS, 20 SNPs were associated with TSH and 6 with FT4 28. The AMD GWAS 

revealed 19 genome-wide significant SNPs related to the phenotype. None of the SNPs from the 

thyroid function GWAS were significant in the AMD GWAS. One SNP (rs943080) in the Vascular 

Endothelial Growth Factor A (VEGFA) gene that is related to AMD, was also significantly associated 

with TSH (p=1.2x10-4, significance threshold =0.0026) (Supplementary Table 2). Within our study 

population, GWAS data were available for a total 4646 participants. Additionally correcting for the 

rs943080 SNP in the most adjusted model in these participants, resulted in similar risk estimates for 

the FT4 analysis (HR 1.04, CI 95% 1.01-1.07). Stratifying for this SNP did show risk differences between 

the different genotypes but not significantly (Supplementary Table 1).

TABLE 3 - Sensitivity Analyses excluding participants with Thyroid Medication or Thyroid Disease at baseline

Incident AMD vs no AMD AMD N Total N

HR (95% CI), 

model 1

HR (95% CI), 

model 2

HR (95% CI), 

model 3

Excluded medication thyroida

Free T4 752 5225 1.03 (1.01-1.06) 1.03 (1.01-1.06) 1.03 (1.01-1.06)

TSH mIU/L 778 5417 0.99 (0.91-1.08) 1.00 (0.92-1.09) 1.00 (0.91-1.09)

Excluding baseline thyroid diseaseb

Free T4 751 5237 1.04 (1.01-1.08) 1.04 (1.01-1.07) 1.04 (1.01-1.08)

TSH mIU/L 764 5300 0.98 (0.89-1.07) 0.98 (0.89-1.07) 0.97 (0.89-1.07)

a 155 participants had thyroid medication (ie. thyroid hormone use) at baseline
b 272 participants had self-reported thyroid disease at baseline

Model 1: Adjusted for sex and age.

Model 2: Model 1 + smoking, hypertension, cholesterol, diabetes, BMI.

Model 3: Model 2 + thyroid peroxidase antibodies positivity

Abbreviations: BMI body-mass index; CI confidence interval; FT4 free thyroxine; HR hazard ratio; TSH thyroid-stimulating 

hormone

TABLE 4 - Association between FT4 and TSH with Retinal Pigment alterationsa 

Incident pigment alterations vs no 

pigment alterations Cases N Total N

HR (95% CI), 

model 1

HR (95% CI), 

model 2

HR (95% CI) , 

model 3

TSH mIU/L 729 5401 0.98 (0.90-1.06) 0.97 (0.90-1.06) 0.96 (0.88-1.04)

Normal range TSHb 618 4591 1.02 (0.87-1.20) 1.05 (0.89-1.23) 1.04 (0.88-1.22)

FT4 pmol/L 720 5338 1.04 (1.01-1.07) 1.04 (1.01-1.07) 1.04 (1.01-1.07)

Normal range FT4c 697 5226 1.04 (1.01-1.07) 1.04 (1.01-1.07) 1.04 (1.01-1.07)

Normal range FT4c in normal range TSHb 601 4500 1.03 (1.00-1.07) 1.03 (0.99-1.06) 1.03 (0.99-1.06)

a participants with late AMD were excluded from this analysis
b normal range of TSH defined as 0.4-4.0 mIU/L.
c normal range of FT4 defined as 11-25 pmol/L.

Model 1: Adjusted for sex and age.

Model 2: Model 1 + smoking, hypertension, cholesterol, diabetes, BMI.

Model 3: Model 2 + thyroid peroxidase antibodies positivity

Abbreviations: BMI body-mass index; CI confidence interval; FT4 free thyroxine; HR hazard ratio; TSH thyroid-stimulating 

hormone
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DISCUSSION

In this prospective cohort study we investigated the association between thyroid function and 

incidence of AMD. Higher FT4 values were associated with an increased risk of developing AMD, 

even within the normal range of TSH and FT4 (i.e. euthyroid subjects), while there was no association 

between TSH and AMD. The similar findings between higher levels FT4 and retinal pigment alterations 

might suggest that thyroid hormone plays a role in the development of AMD rather than just act as 

a promoter of disease. To our knowledge, this is the first prospective population-based cohort study 

to look at the association between thyroid function and AMD.

A limited number of studies investigating thyroid disease and AMD have been published, all lacking 

laboratory assessment of thyroid function. Bromfield et al. reported an increased risk of AMD in 

subjects with self-reported hypothyroidism 30. A case-control study by Anand et al. reported an 

association between thyroid hormone use and a higher risk of AMD with geographic atrophy 31, 

but no data were reported on the number of patients that were over- or undertreated. Similarly, the 

Beaver Dam Eye study also reported an association between thyroid hormone use and early AMD 32, 

but this was not confirmed by Douglas et al. 33. As mentioned previously, none of these studies had 

laboratory assessment of thyroid function nor did they investigate the association in a time-to-event 

analysis. In our study, excluding all subjects using thyroid medication did not alter risk estimates, 

supporting a potential intrinsic effect of thyroid hormone.

There are several pathophysiological explanations for the relationship between thyroid hormones 

and AMD. In a mouse model of retinal degeneration, suppression of thyroid hormone signaling 

resulted in preservation of cone photoreceptors 12. The same study found that stimulating thyroid 

hormone signaling, by administering the active thyroid hormone triiodothyronine, deteriorates 

cones in mouse models with a slow progressive and moderate degeneration phenotype 12. In 

addition, mice lacking type 3 deiodinase, the enzyme responsible for the degradation of thyroid 

hormones, have decreased survival and disturbed maturation of cone photoreceptors 34. The findings 

of these studies suggest that thyroid hormone may lead to a higher turnover of photoreceptors 

and in retinal degeneration this leads to deterioration of photoreceptors. Beside photoreceptors, 

thyroid hormone might also have an influence on the retinal pigment epithelial cells 11. In the healthy 

retina the turnover of photoreceptors is extremely high. Every day the photoreceptors shed the ends 

of their outer segments resulting in full renewal every ten days. These shedded parts of the outer 

segments are fagocytosed by the retinal pigment epithelium (RPE) cell 35. Increase of the turnover 

of the photoreceptors by thyroid hormone may bring additional stress to the process. RPE cells at 

distress may change resulting in pigmentary alterations in the macular area. The RPE cells may also 

be targeted directly by the thyroid hormone resulting in these changes 11. These results may provide 

an explanation for the findings in our study.

Thyroid dysfunction has been linked to cardiovascular risk factors and disease, including effects on 

the vascular function, lipids and atherosclerosis 36. As some of these risk factors are also linked to 

AMD 20,21, one could speculate about a joint vascular pathway leading to both thyroid dysfunction 

and AMD or perhaps that the relation between thyroid dysfunction and AMD could be mediated 

through this pathway. We were not able to confirm these hypotheses. First of all, these cardiovascular 

risk factors are mainly seen in hypothyroidism, (i.e. high TSH and low FT4), whereas our data show an 

association between high FT4 and AMD. Also, correcting for some of these risk factors (for example 

hypertension) that could act as confounders and possible mediators did not change risk estimates, 

suggesting that the effect of thyroid function is not through these pathways. Lastly, VEGFA gene was 
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found to be significant in the look-up for the TSH GWAS and not the FT4 GWAS. However, our results 

suggest a higher risk of AMD in higher levels of FT4 and not in TSH. Furthermore, the association did 

not change by adding this SNP to the multivariable model.

We find an effect with FT4 but not with TSH. This however does seem to be in line with previous 

literature from cohort studies in elderly populations investigating the relation between thyroid 

function and several other endpoints 37,38. Regulation of serum thyroid hormone levels is controlled 

by the hypothalamus-pituitary-thyroid axis. The set point of this feedback mechanism is defined 

individually, with thyroid hormone levels showing a much greater inter-individual than intra-

individual variability 39. The individual set point can be modulated by several pathophysiological (for 

example critical illness) and physiological (for example ageing) mechanisms40. This could be one of 

the explanation why in this elderly and ageing population we do find an association with FT4 but 

not with TSH, especially in the euthyroid range. Furthermore, previous literature showed an increase 

in TSH with increasing age, suggesting higher TSH levels are needed to keep thyroid hormone levels 

within the desired range38. We only have thyroid function measures at baseline and are therefore 

not able to investigate whether changes in thyroid function over time is an explanation for the 

discordant association between TSH, FT4 and AMD.

Important strengths of our study are the assessment of thyroid function at baseline through laboratory 

testing as well as the elaborate assessment of AMD at baseline and follow-up. Also, we were also able 

to investigate the association between thyroid function and specific AMD lesions like retinal pigment 

alterations to examine possible early changes in underlying pathways. The availability of genetic 

data gave us the opportunity to explore possible genetic pathways. The bidirectional genetic look-

up, revealed one SNP in the VEGFA gene to be significant in the TSH GWAS but not for FT4. Adding 

this SNP to the multivariate model did not alter risk estimates. An explanation for the absence of 

overlapping genome-wide significant SNP’s could be that these GWA studies were underpowered 

for this association.

A limitation of our study is that thyroid parameters were measured once at baseline. Therefore, the 

evolution of thyroid hormone levels could not be taken into account. Also, residual confounding 

cannot be excluded, even with the large number of covariates included in these analyses. Lastly, 

this study is conducted in a mainly Caucasian population of 55 years and older and may not be 

generalizable to other populations.

CONCLUSION

We find an increased risk of incident AMD in subjects with higher FT4 levels, even in those with 

a normal thyroid function and when excluding thyroid medication users. This implies an intrinsic 

(that is. not exogenous) deleterious effect of thyroid hormone on AMD. We also find an association 

between higher FT4 levels and retinal pigment alterations, suggesting that thyroid hormone could 

even play a role in the early stage of development of AMD. Functional and clinical studies could 

provide more evidence for a true causal relationship.
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ABSTRACT

Purpose To determine if use of antiplatelet or anticoagulant (AP/AC) medication influences visual 

acuity in patients with active neovascular age-related macular degeneration (N-AMD).

Design Retrospective analysis of data from a randomized controlled trial

Methods

Setting: Multi-center

Study Population: 330 patients with active N-AMD from the BRAMD study, a comparative trial 

between bevacizumab and ranibizumab in the Netherlands.

Observation Procedures: Patients underwent an extensive ophthalmic examination. Visual acuity 

was categorized into functional vision (best corrected visual acuity (BCVA) >=0.5), visual impairment 

(BCVA < 0.5), and severe visual impairment (BCVA<0.3). Fundus photographs were graded for 

presence of retinal or subretinal hemorrhages. Information on AP/AC medication was obtained 

through interview. Logistic regression analysis was used to determine associations between AP/AC 

medication and outcomes. Frequency of hemorrhages in users and non-users stratified for visual 

acuity categories was analyzed with ANCOVA.

Main Outcome Measures: BCVA and presence of hemorrhages.

Results In total, 40.9% of the patients used AP/AC medication, of which 73.3% was aspirin. AP/AC use 

was not associated with visual impairment (adjusted odds ratio (OR) 0.79 (95% confidence interval 

(CI) 0.43-1.44), or severe visual impairment (adjusted OR 0.75 (95% CI 0.40-1.43). Patients on AP/

AC presented with comparable frequencies of hemorrhages (27% versus 32%, P=0.32, respectively). 

Similar results were found when analyses were restricted to aspirin users only.

Conclusion In our study, use of AP/AC medication was neither associated with visual decline nor 

with the occurrence of hemorrhages in patients with active N-AMD.
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INTRODUCTION

Recently, several population based-studies have shown an association of aspirin use with an 

increased risk of choroidal neovascularization (CNV) in age-related macular degeneration (AMD).1-3 

These findings were not unequivocal as randomized controlled trials4,5 and meta-analyses were 

inconclusive.6-9 These contrasts have renewed the discussion on the use of aspirin and other 

antiplatelet or anticoagulant drugs in persons with neovascular AMD. While these therapies are 

mostly prescribed for their cardiovascular and cerebrovascular protective effects, they may have 

adverse events due to an increased risk of bleeding.10-12 The antithrombotic characteristics may 

deteriorate the outcome of neovascular AMD, leading to more severe hemorrhages and increased 

fibrovascular scarring, both jeopardizing visual acuity.13 At this time, it is still unclear whether 

antiplatelet or anticoagulant medication should be discontinued for patients with neovascular AMD.

We investigated the effect of antiplatelet and anticoagulant medication on visual acuity in patients 

with active CNV. We studied visual acuity, presence of retinal and subretinal hemorrhages, total CNV 

lesion size and retinal thickness in relation to the use of antiplatelet and anticoagulant medication 

before and after anti-vascular endothelial growth factor (anti-VEGF) therapy.

METHODS

BRAMD Study participants

BRAMD is a Dutch comparison study investigating Bevacizumab versus Ranibizumab in AMD, and 

was designed as a triple masked, randomized, clinical non-inferiority multicenter trial. Details on the 

study design have been described elsewhere.14 In short, 330 patients aged 60 years or older from 

five academic medical centers in the Netherlands were included in the study. Inclusion criteria was 

a diagnosis of primary or recurrent active sub- or juxtafoveal choroidal neovascularization (CNV) 

secondary to AMD with a total area of CNV <12 disc areas and a best corrected visual acuity (BCVA) 

score between 20 and 78 letters on an Early Treatment Diabetic Retinopathy Study like chart (ETDRS) 

in the study eye. Further details on in- and exclusion criteria of this study are provided in Supplemental 

Table 1. After baseline assessment, all patients received monthly injections with bevacizumab or 

ranibizumab for 12 months. The institutional ethical review boards from the participating medical 

centers approved the BRAMD study. The study adhered to the tenets of the Declaration of Helsinki 

and was registered at the Dutch trial register (Nederlands trial register) (NTR1704). Participants 

who had a full ophthalmic examination including imaging, disclosed medication use, and a signed 

informed consent were included in the current analysis. In total, 330 eyes from 330 participants were 

included.

Ophthalmic data collection

All participants underwent a standardized full ophthalmic examination and imaging including, 

fluorescein angiogram, 30° color digital fundus photographs and spectral domain optical coherence 

tomography (SD-OCT). Diagnosis, size of lesion quantified as optic disc area (DA), and presence of 

active choroidal neovascularization due to AMD was confirmed by trained independent graders, 

masked for patient information such as the use of antiplatelet or anticoagulant drugs, at the UK 

Network of Ophthalmic Reading Centers. The presence of retinal or subretinal hemorrhage in the 

posterior pole was determined on fundus photographs. Retinal thickness was measured in the fovea 

using a built-in caliper on SD-OCTs at baseline and during last visit. Presence of pseudophakia was 

determined using slit lamp observation.
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Best corrected visual acuity (BCVA) was assessed using an ETDRS chart and categorized in 3 groups:

ETDRS chart letters Snellen decimal equivalent Snellen Foot equivalent

Functional vision BCVA ≥ 70 BCVA ≥ 0.50 BCVA ≥ 20/40

Moderate visual impairment 70 > BCVA ≥ 59 0.50 > BCVA ≥ 0.30 20/40 > BCVA ≥ 20/66

Severe visual impairment 59 > BCVA ≥ 20 0.30 >BCVA ≥ 0.05 20/66 > BCVA ≥ 20/400

Assessment of variables

At baseline, detailed information was obtained from the participants concerning demographic 

characteristics, medical history, and medication use. Medical history included information about 

cardiovascular diseases such as myocardial infarction, congestive heart failure, stroke, transient 

ischemic attack and hypertension. Information on use of antiplatelet and anticoagulant (AP/AC) 

drugs including name of the drug, dosage, frequency and start date was obtained at baseline. Blood 

pressure was measured at baseline. Hypertension was defined as systolic blood pressure ≥ 140 

mmHg or a diastolic blood pressure ≥90 mmHg or if the participant was using anti-hypertensive 

medication at baseline. Smoking habits were assessed by interview and categorized into never/past/

current smoking.

Statistical analysis

Primary study outcomes were visual impairment (moderate and severe visual impairment combined) 

and severe visual impairment. Secondary outcomes were presence of retinal hemorrhages, foveal 

retinal thickness, and CNV lesion size in the study eye. Several determinants had missing values. 

Lens data were missing in 16% of study subjects, smoking data in 18.8%. Missing data were 

randomly distributed, and not significantly associated with visual impairment (analysis of covariance 

(ANCOVA) adjusted for age, sex P=1.00 for lens; P=0.47 for smoking). We used the iterative Markov 

chain Monte Carlo algorithm (5 steps) for multiple imputations. These were calculated using possible 

predictable baseline values such as age, sex, diabetes, and smoking for lens data; age, sex, history 

of cardiovascular disease, hypertension, and CNV presence in the fellow eye for smoking data. 

Analyzing the dataset excluding the multiple imputations for the variables lens status and smoking 

did not change risk estimates or associations observed in this study.

We first analyzed baseline characteristics between users of AP/AC and nonusers; continuous variables 

were compared using ANCOVA and categorical variants using logistic regression. After this we 

plotted users and nonusers of AP/AC with visual acuity and with retinal hemorrhages. Groups were 

compared using ANCOVA adjusted for age, sex, and study center. We then performed binary logistic 

regression analysis for the use of AP/AC and visual impairment, severe visual impairment, retinal 

hemorrhages, and CNV lesions size. Foveal retinal thickness measurements were also analyzed using 

ANCOVA. All analyses were adjusted for age, sex, and study center, and subsequently for smoking, 

medical history cardiovascular diseases, diabetes, hypertension, choroidal neovascularization in the 

fellow eye, lens status. All statistical analyses were performed using SPSS version 21 (SPSS IBM, New 

York, U.S.A.).
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RESULTS

General characteristics of the 330 study participants from the BRAMD study are presented in 

Table 1. AP/AC users were slightly older (mean age 79.4 years for AP/AC users versus 76.4 years for 

nonusers; P = 0.001) and presented more often with diabetes mellitus (17.0% versus 8.7%; P = 0.01). 

Although users were more often diagnosed with hypertension (81.9% versus 52.0%; P <0.0001), no 

significant differences were found for blood pressure measurements (P = 0.37 for systolic and P = 

0.54 for diastolic blood pressure). History of cardiovascular diseases was more common in users 

(34.1% versus 4.6%; P <0.0001). 40.9% of the study participants used any type of AP/AC drug. In those 

using AP/AC medication, antiplatelet drugs, with aspirin in particular, were the type of medication 

mostly used; 76.3% and 73.3%, respectively. Other baseline characteristics did not differ significantly 

between both groups.

We investigated use of AP/AC drugs and risk of visual impairment (Table 2). Use of AP/AC was not 

associated with visual impairment (Odds’ Ratio (OR) 0.74 (95% Confidence Interval (CI) 0.44-1.24), 

adjusted for age, sex, and study center) and (OR 0.79 (95% CI 0.43-1.44), additional adjustment 

for smoking, lens status, medical history for cardiovascular diseases, diabetes, hypertension and 

presence of CNV in the fellow eye). AP use was significantly associated with a lower risk of visual 

impairment (OR 0.58 (95% CI 0.34-0.99). After adjustment for additional confounders, the association 

was no longer significant (OR 0.61 (95% CI 0.34-1.09)). For aspirin use, estimates were in the same 

direction, but no significant association was found. Associations with AC drugs were not significant 

in either model. The analyses with severe visual impairment as outcome showed similar effects, 

but none of the associations were significant. We also analyzed visual acuity from the last visit of 

the BRAMD study. Estimates were in the same direction, but no significant association was found 

(Supplemental Table 2).

The distribution of baseline functional vision and visual impairment was plotted for the presence of 

retinal or subretinal hemorrhages in users and nonusers of AP/AC medication (Supplemental Figure 

1). Visual acuity was significantly lower in those with retinal or subretinal hemorrhages (P = 0.008). 

However, users or nonusers of AP/AC with hemorrhages did not differ in visual acuity (P=0.77).

The association between AP/AC use and the presence of retinal or subretinal hemorrhages is shown 

in Table 3. Users of AP/AC medication had a lower risk of hemorrhages. The association became 

significant after additional adjustment for covariates, OR 0.76 (95% CFI 0.46-1.25) and OR 0.47 (95% 

CI 0.26-0.83), respectively. This trend was also observed for AP; OR 0.52 (95% CI 0.30-0.90) and OR 

0.34 (95% CI 0.18-0.62), respectively. Aspirin use became significantly associated with a lower risk of 

hemorrhages after additional adjustment; OR 0.61 (95% CI 0.34-1.08) and OR 0.36 (95% CI 0.18-0.71), 

respectively. No association was found between AC and hemorrhages.

Foveal retinal thickness differed significantly between aspirin users and nonusers at baseline 

(P = 0.04). This was not observed during the last visit (P =0.84). With respect to other groups, no 

significant difference was found between users and nonusers at baseline (Supplemental Table 3) 

or during their last visit (Supplemental Table 4). AP/AC was not associated with CNV lesions size at 

baseline (Supplemental Table 5).
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TABLE 1 - Baseline characteristics of the study population

BRAMD study N=330

P Valuea

Nonusers

N=195

AP/AC users

N=135

Age, yrs (sd) 76.4 (8.9) 79.4 (6.5) 0.001

Sex, % males 42.1 47.4 0.29

Smokers, % former and current 65.6 68.4 0.47

Retinal or subretinal hemorrhage, % 32.3 26.7 0.32

Best corrected visual acuity study eye, %     0.35

Functional vision 25.1 28.1  

Moderate visual impairment 32.3 28.9  

Severe visual impairment 42.6 43.0  

Pseudophakic eyes, % 37.0 21.5 0.49

CNV in the fellow eye, % 22.6 23.8 0.63

Retinal foveal thickness, μm (sd) 380 (123) 396 (120) 0.27

CNV lesion size, %     0.36

0-1 disc area 36.6 32.6  

≥2 disc area 63.4 67.4  

Diabetes Mellitus, % 8.7 17.0 0.01

Hypertension, % 46.2 83.7 <0.0001

Systolic blood pressure, mmHg (sd) 153 (21) 151 (25) 0.37

Diastolic blood pressure, mmHg (sd) 81 (10) 80 (12) 0.54

History of cardiovascular diseases, % 4.6 34.1 <0.0001

Myocardial infarction 3.1 11.9 <0.0001

Congestive heart failure 1.0 4.4 0.16

Stroke 1.0 3.7 0.26

Transient ischaemic attack 1.0 18.5 <0.0001

Antiplatelet or anticoagulant drugs, % 0 100  

Antiplatelet drugs, % - 76.3  

Aspirin - 73.3  

Clopidogrel - 5.7  

Anticoagulant drugs, % - 27.4  

Acenocoumarol - 21.0  

Fenprocoumon - 4.8  

For continuous variables means were calculated
a P values were calculated using analysis of covariance for continuous variables and logistic regression for discrete variables, 

adjusted for age, sex and study center

Abbreviations: AP/AC = antiplatelet or anticoagulant, CNV = choroidal neovascularization, sd = standard deviation, yrs = years 
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TABLE 2 - Association between antiplatelet or anticoagulant medication and risk of visual impairment at baseline 

Risk of visual impairment 

Functional

vision eyes

(N=87)

Visual

impaired eyes

(N=243)

OR (95% CI) 

Model 1 

OR (95% CI) 

Model 2

Use of antiplatelet or anticoagulant drug        

 No 49 146 1 1

 Yes 38 97 0.74 (0.44-1.24) 0.79 (0.43-1.44)

Use of antiplatelet drugs      

 No 54 173 1 1

 Yes 33 70 0.58 (0.34-0.99) 0.61 (0.34-1.09)

Use of anticoagulant drugs        

 No 81 212 1 1

 Yes 6 31 1.88 (0.75-4.70) 2.00 (0.77-5.18)

Type of antiplatelet or anticoagulant drugs        

 None 49 146 1 1

 Aspirin 31 68 0.64 (0.37-1.12) 0.76 (0.40-1.44)

 Acenocoumarol 5 24 1.42 (0.51-3.98) 1.26 (0.40-3.99)

Risk of severe visual impairment 

Functional

vision eyes 

(N=87)

Severe visual 

impaired eyes 

(N=141)

OR (95% CI) 

Model 1 

OR (95% CI) 

Model 2 

Use of antiplatelet or anticoagulant drug        

 No 49 83 1 1

 Yes 38 58 0.74 (0.42-1.30) 0.75 (0.40-1.43)

Use of antiplatelet drugs    

 No 54 97 1 1

 Yes 33 44 0.64 (0.36-1.15) 0.66 (0.35-1.26)

Use of anticoagulant drugs        

 No 81 124 1 1

 Yes 6 17 1.63 (0.61-4.41) 1.57 (0.57-4.33)

Type of antiplatelet or anticoagulant drugs        

 None 49 83 1 1

 Aspirin 31 44 0.71 (0.39-1.30) 0.75 (0.38-1.50)

 Acenocoumarol 5 14 1.34 (0.44-4.09) 1.18 (0.36-3.85)

Model 1: adjusted for age, sex and study center

Model 2: model 1 including smoking, lens status, medical history cardiovascular diseases, diabetes, hypertension, choroidal 

neovascularization fellow eye

Abbreviations: CI = confidence interval, OR = Odds' ratio
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TABLE 3 - Association between antiplatelet or anticoagulant medication and the risk of retinal or subretinal 

hemorrhage at baseline

 

No 

hemorrhage

(N=231)

retinal or subretinal 

hemorrhage

(N=99)

OR (95% CI) 

Model 1 

OR (95% CI) 

Model 2 

Use of antiplatelet or anticoagulant drug        

No 132 63 1 1

Yes 99 36 0.76 (0.46-1.25) 0.47 (0.26-0.83)

Use of antiplatelet drugs      

No 150 81 1 1

Yes 77 22 0.52 (0.30-0.90) 0.34 (0.18-0.62)

Use of anticoagulant drugs        

No 210 83 1 1

Yes 21 16 2.07 (1.02-4.20) 1.71 (0.82-3.58)

Type of antiplatelet or anticoagulant drugs

None 132 63 1 1

Aspirin 77 22 0.61 (0.34-1.08) 0.36 (0.18-0.71)

Acenocoumarol 14 15 2.37 (1.06-5.31) 1.28 (0.51-3.20)

Model 1: adjusted for age, sex and study center

Model 2: model 1 including smoking, medical history cardiovascular diseases, diabetes, hypertension,

choroidal neovascularization fellow eye

Abbreviations: CI = confidence interval, OR = Odds' ratio

DISCUSSION

In the BRAMD study, we showed that AP/AC use did not increase the risk of visual impairment in 

patients with neovascular AMD, nor did this medication increase the risk of retinal hemorrhages. 

Subgroup analysis identified aspirin as the major contributor to these associations. AP/AC use was 

not associated with CNV lesion size. For foveal retinal thickness, however, aspirin use was borderline 

significantly associated with a thicker retina. After monthly anti-VEGF injections given for one year, 

no differences were observed between users and nonusers for the different outcomes.

This study has strengths and limitations. An important benefit was that our study was a case only 

study of neovascular AMD, resulting in a larger similarity of disease characteristics than population-

based studies, which compare AMD versus no AMD. Factors such as smoking, visual acuity in the 

study eye, disease activity in the fellow eye, and pseudophakia were comparable between users and 

non-users. Other strengths are the strict inclusion criteria of the BRAMD trial requiring multimodal 

imaging to diagnose active CNV, homogenizing the CNV cases entering the study. Among the 

limitations are the lack of data on medication use prior to the onset of CNV, the exclusion of severe 

cases, and the relatively small sample size. This limited our ability to perform detailed subgroup 

analyses, and may hamper extrapolation of findings. We observed a higher age and frequency of 

diabetes and cardiovascular disorders among users of AP/AC in concordance with the indication for 

these medications. Nevertheless, true confounding by indication is unlikely: the beneficial effect for 

AP/AC users found in our study is not in line with the higher risk of AMD for cardiovascular disorders 

suggested by some studies.15,16
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Our study investigated the effect of AP/AC medication on visual acuity, while most other studies 

focused on onset of early and late stages of AMD, or on the occurrence of hemorrhages only. With 

respect to AMD, the majority of population-based studies found an increased risk of CNV. The 

cross-sectional EUREYE study observed a two times increased risk of CNV for aspirin users, which 

sustained after correction for indication.1 The Beaver Dam Eye Study (BDES) and Blue Mountains Eye 

Study (BMES) found a similarly increased risk of CNV, however, BDES observed this increase only 

for those with at least 10-year intake.2 The association found by BMES was no longer significant 

after adjustment of additional cardiovascular risk factors.3 Case studies and clinical trials did not 

support an increased risk of AMD. The Women’s Health Study found a lower, albeit nonsignificant, 

risk of visually significant AMD for those randomized to aspirin.5 The Physician Health Study found 

a similar trend for the entire group of aspirin users, and a significantly protective effect in men with 

hypertension.4 A case study performed by Wilson et al. also found a protective effect of aspirin: fewer 

AMD patients on this medication developed CNV.17 The Age-Related Eye Disease Study 2 reported 

this trend as well. This study observed a protective effect of aspirin use with the presence of AMD, 

including CNV, and with progression of AMD.18,19 Meta-analyses and reviews have been published 

evaluating studies of various designs.6-9,20-23 Overall risk estimates varied from no to a small increased 

risk (overall risk ratio < 2) for CNV as well as for other forms of AMD. Nevertheless, the inconsistency 

of study results was striking.

To evaluate whether AP/AC medication influenced the macular anatomy, we compared foveal retinal 

thickness and CNV lesion size between users and nonusers. We found a borderline significantly 

thicker foveal retinal thickness for aspirin users, compared to non-users. This association was found 

after additional adjustment for frequency of diabetes, hypertension, cardio vascular history and 

CNV in the fellow eye, all variables which could influence foveal retinal thickness. Unfortunately, 

we did not have morphology on OCT images to our disposal, which may have helped to explain 

the observed differences. Foveal retinal thickness was comparable between the aspirin users and 

the nonusers after treatment with anti-VEGF medication. For the other AP/AC groups, no significant 

association as found for both foveal retinal thickness and CNV lesions size at baseline and after anti-

VEGF treatment. Animal studies showed equivalent results: aspirin treated mice did not differ in laser 

induced CNV lesion size from the control group.24

AP/AC use has been associated with an increased risk of bleeding, such as cerebral and 

gastrointestinal bleeding.10 Whether this also accounts for ocular hemorrhages is still unclear. This 

study provides evidence that in particular aspirin users do not have an increased risk of retinal or 

subretinal hemorrhages. Several other studies focused on AP/AC and hemorrhages in CNV.25-35 None 

of these studies found a protective effect. Tilanus et al.29 found a higher risk of large hemorrhages, 

in particularly for AC users, while Kuhli-Hattenbach et al.27,33 and Kiernan et al.25 found an increased 

risk of large hemorrhages for all AP/AC users. By contrast, the Macular Photocoagulation Study26 

did not find a significant association between aspirin use and hemorrhages, and the Comparison of 

AMD Treatment Trials (CATT) study30 only found a significant association for aspirin and clopidogrel 

bisulfate after stratification for hypertension. Stratification for hypertension did not influence our 

results (Supplemental Table 6). What could explain these differences in results, in particularly those 

from the CATT Study? The BRAMD study used very similar inclusion criteria as CATT, however, patients 

with >70% lesion area covered by blood were excluded in our study. We do not think that this is an 

explanation to the data, as the proportion of patients with >2 DA of hemorrhage in CATT was small 

(<5%). A factor that could be held accountable is the eligibility of patients with past treatments for 
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AMD in BRAMD (13.3%). In CATT, only naïve patients were eligible and hemorrhages had therefore 

not undergone prior treatment. Reports on patients treated with anti-VEGF reported only 0.6% 

macular hemorrhages and these hemorrhages were not associated with AP/AC use.36

Aspirin appeared to be the major driver of the beneficial effect of AP/AC in our study. Fourty 

percent of the population used AP/AC medication, of which three fourth was aspirin. Aspirin is a 

nonsteroidal anti-inflammatory drug (NSAID) and the only NSAID that irreversibly inactivates both 

isoforms of the cyclooxygenase (COX) enzymes.12,23 It can suppress the production thromboxanes 

and prostaglandins by inhibiting the catalytic activity of COX-1 and COX-2, thereby reducing platelet 

aggregation, inflammation, and angiogenesis, and promoting apoptosis.23,24,37 A recent study in mice 

showed that inhibition of COX-2 reduced angiogenesis and subretinal fibrosis in CNV.38 Mechanisms 

independent of COX can also induce cell apoptosis.37 Aspirin has antioxidant properties and 

provides a protective effect against lipid peroxidation, upregulates other antioxidants, and inhibits 

mitochondrial oxidative phosphorylation reducing reactive oxygen species.24,37,39 Finally, aspirin 

modulates DNA transcription through inhibition of nuclear factor kappa B, thereby influencing many 

biological processes, including inflammation and apoptosis.23,37 Taken together, aside from the anti-

platelet aggregation and apoptosis, these actions of aspirin are in line with a favorable effect on 

AMD.

In summary, the BRAMD trial suggests that AP/AC use did not increase the risk of visual impairment 

or the occurrence of hemorrhages. Validation of our data is expected from the large-scale ‘ASPirin in 

Reducing Events in the Elderly’ (ASPREE) trial, an ongoing study which investigates the use of low-

dose daily aspirin on AMD phenotype.40 Our findings are of clinical importance, because they imply 

that patients with neovascular AMD can continue their prescribed use of AP/AC medication without 

negative effects on AMD outcome.
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SUPPLEMENTAL TABLE 1 - In- and exclusion criteria of the BRAMD study

Inclusion criteria

Patients 60 years of age or higher.

Patients with primary or recurrent sub-, juxta- or extrafoveal CNV secondary to AMD, including those with RAP, that may 

benefit from anti-VEGF treatment in the opinion of the investigator.

The total area of CNV (including both classic and occult components) encompassed within the lesion must be more or equal 

to 30% of the total lesion area.

The total lesion area should be < 12 disc areas.

A best corrected visual acuity (BCVA) score between 78 and 20 letters (approximately 0,63–0,05 Snellen equivalent) in the 

study eye.

Exclusion criteria

Ocular treatment with anti-angiogenic drugs in the last 2 months or Triamcinolone in the last 6 months.

Laser photocoagulation (juxtafoveal or extrafoveal) in the study eye within one month preceding baseline.

Patients with angioid streaks or precursors of CNV in either eye due to other causes, such as ocular

histoplasmosis, trauma, or pathologic myopia.

Spherical equivalent of refractive error in the study eye demonstrating more than– 8 diopters of myopia.

Cataract extraction within three months preceding baseline.

IOP >25 mm Hg.

Active intraocular inflammation in the study eye.

Vitreous hemorrhage obscuring view of the posterior pole in the study eye.

Presence of a retinal pigment epithelial tear involving the macula in the study eye.

Subretinal hemorrhage in the study eye if the size of the hemorrhage is > 70% of the lesion.

Subfoveal fibrosis or atrophy in the study eye.

History of hypersensitivity or allergy to fluorescein.

Inability to obtain fundus photographs, fluorescein angiograms or OCT’s of sufficient quality to be analyzed and graded by 

the Central Reading Centre.

Systemic disease with a life expectancy shorter than the duration of the study.

Inability to adhere to the protocol with regard to injection and follow-up visits.

Legally incompetent adult.

Refusal to give written informed consent.
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SUPPLEMENTAL TABLE 2 - Association between antiplatelet or anticoagulant medication and risk of visual 

impairment during last visit

Risk of visual impairment

Functional 

vision eyes 

(N-178)

Visual 

impaired eyes 

(N=148)

OR (95% CI) 

Model 1 

OR (95% CI) 

Model 2

Use of antiplatelet or anticoagulant drug        

 No 105 87 1 1

 Yes 73 61 0.90 (0.57-1.42 0.97 (0.58-1.65)

Use of antiplatelet drugs        

 No 117 106 1 1

 Yes 61 42 0.69 (0.42-1.12) 0.71 (0.42-1.19)

Use of anticoagulant drugs        

 No 163 127 1 1

 Yes 15 21 1.69 (0.83-3.45) 1.81 (0.86-3.82)

Type of antiplatelet or anticoagulant drugs        

 None 105 87 1 1

 Aspirin 57 42 0.80 (0.48-1.32) 0.92 (0.52-1.63)

 Acenocoumarol 11 17 1.63 (0.71-3.74) 1.90 (0.73-4.96)

Risk of severe visual impairment 

Functional 

vision eyes 

(N-178)

Severe visual 

impaired eyes 

(N=94)

OR (95% CI) 

Model 1 

OR (95% CI) 

Model 2 

Use of antiplatelet or anticoagulant drug        

 No 105 52 1 1

 Yes 73 42 1.02 (0.60-1.71) 1.04 (0.57-1.88)

Use of antiplatelet drugs        

 No 117 64 1 1

 Yes 61 30 0.81 (0.47-1.39) 0.81 (0.45-1.48)

Use of anticoagulant drugs        

 No 163 80 1 1

 Yes 15 14 1.78 (0.81-3.92)  1.73 (0.76-3.91)

Type of antiplatelet or anticoagulant drugs       

 None 105 52 1 1

 Aspirin 57 30 0.96 (0.54-1.70) 1.23 (0.53-1.94)

 Acenocoumarol 11 12 1.96 (0.80-4.83) 2.04 (0.72-5.75)

Model 1: adjusted for age, sex and study center

Model 2: model 1 including smoking, lens status, medical history cardiovascular diseases, diabetes, hypertension, choroidal 

neovascularization fellow eye

Abbreviations: CI = confidence interval, OR = Odds' ratio
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SUPPLEMENTAL TABLE 3 - Association between antiplatelet or anticoagulant medication and foveal retinal 

thickness on OCT at baseline 

 

 

User Nonuser
 

P value*

 

P value**N FRT N FRT

Antiplatelet or anticoagulant drug 135 396 (120) 195 380 (123) 0.27 0.08

Antiplatelet drugs 103 401 (128) 227 380 (118) 0.19 0.06

Anticoagulant drugs 37 390 (95) 293 386 (125) 0.73 0.73

Type of anticoagulant            

 Aspirin 99 405 (129) 195 380 (123) 0.15 0.04

 Acenocoumarol 29 399 (96) 195 380 (123) 0.37 0.29

FRT is in μm and values are mean (SD)

P values obtained using ANCOVA

* adjusted for age, sex and study center

** adjusted for age, sex, study center, smoking, medical history cardiovascular diseases, diabetes, hypertension, choroidal 

neovascularization fellow eye

Abbreviations: FRT = foveal retinal thickness, OCT = optical coherence tomography, SD = standard deviation 

SUPPLEMENTAL TABLE 4 - Association between antiplatelet or anticoagulant medication and foveal retinal 

thickness on OCT during last visit

 

 

User Nonuser
 

P value*

 

P value**N FRT N FRT

Antiplatelet or anticoagulant drug 133 247 (67) 193 248 (61) 0.73 0.91

Antiplatelet drugs 103 247 (70) 223 248 (60) 0.77 0.98

Anticoagulant drugs 35 247 (62) 291 248 (64) 0.99 0.98

Type of anticoagulant            

 Aspirin 99 246 (71) 193 248 (61) 0.61 0.84

 Acenocoumarol 28 248 (67) 193 248 (61) 0.91 0.56

FRT is in μm and values are mean (SD)

P values obtained using ANCOVA

* adjusted for age, sex and study center

** adjusted for age, sex, study center, smoking, medical history cardiovascular diseases, diabetes, hypertension, choroidal 

neovascularization fellow eye

Abbreviations: FRT = foveal retinal thickness, OCT = optical coherence tomography, SD = standard deviation
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SUPPLEMENTAL TABLE 5 - Association between antiplatelet or anticoagulant medication and CNV lesion size at 

baseline

 

Lesion size < 2 DA

 (N=109)

Lesion size ≥ 2 DA 

(N=203)

OR (95% CI) 

model 1

OR (95% CI) 

model 2

Use of antiplatelet or anticoagulant drug        

 No 67 116 1 1

 Yes 42 87 1.26 (0.77-2.06) 1.47 (0.83-2.60)

Use of antiplatelet drugs        

 No 75 138 1 1

 Yes 34 65 1.09 (0.65-1.82) 1.18 (0.67-2.06)

Use of anticoagulant drugs      

 No 100 178 1 1

 Yes 9 25 1.58 (0.70-3.55) 1.66 (0.72-3.86)

Type of drugs        

 None 67 116 1 1

 Apirin 30 65 1.37 (0.79-2.35) 1.68 (0.90-3.15)

 Acenocoumarol 7 20 1.67 (0.65-4.25) 1.83 (0.64-5.20)

Model 1: adjusted for age, sex and study center

Model 2: model 1 including smoking, medical history cardiovascular diseases, diabetes, hypertension, choroidal 

neovascularization fellow eye

Abbreviations: CI = confidence interval, CNV = choroidal neovascularization, DA = disk area, OR = Odds' Ratio
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SUPPLEMENTARY FIGURE 1 - Distribution of visual acuity in those with or without retinal or subretinal hemorrhage 

for antiplatelet or anticoagulant medication

On the x-axis the frequency in percentages is plotted, on the y- axis the groups indicating the users and nonusers of antiplatelet 

or anticoagulant medication and these group were further stratified for presence of retinal or subretinal hemorrhage (+) or no 

presence hemorrhage (-).

Abbreviations AC = anticoagulant, AP = antiplatelet.
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SUMMARY

The genetics of age-related macular degeneration (AMD) has been an exciting research area during 

the last decade. The advances in molecular genetic techniques paved the way for great progress 

in the discovery of genes and led to identification of many disease-associated risk variants. Several 

genes have been associated with AMD and the two major AMD genes are CFH and ARMS2-HTRA1 

. Other genes associated with AMD are complement (CFB/C2, C3, CFI), lipid (APOE, LIPC, CETP, 

suggested genes LPL and ABCA1), and collagen genes (COL8A1 and COL10A), implicating a role for 

these in the pathogenesis of AMD.

Interactions of AMD genes with life style factors such as smoking and anti-oxidant intake have been 

reported and are of interest to manage AMD risk.
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GENETIC FACTORS

Although familial occurrence had been known for many years, major advances in the identification 

of genetic factors for AMD were achieved after the start of Genome Wide Association Studies (GWAS). 

We will discuss the currently known AMD-associated genes and their importance to the disease. A 

summary of the genes can be found in Table 1.

The Complement Pathway Genes

Complement Factor H (CFH)

CFH is one of the two major AMD genes. The CFH protein is a key regulator of the complement 

pathway – it inhibits the activation of complement component C3 to C3b and degrades C3b, thereby 

limiting the amplification phase of the alternative complement cascade.1 CFH is present in serum, 

not membrane-bound, expressed in the retinal pigment epithelium and can be found in drusen.2,3

First reports on an association between CFH and AMD stem from 2005,4,5,6 and since then this finding 

has been replicated by numerous studies in different populations.7-38 The well-known risk allele Y402H 

is common in Caucasians and Africans (~36%), but much less so in Asians (~7–15%) and Hispanics 

(~17%).39 Functionally, this and other risk alleles have been shown to alter CFH binding, thereby 

impairing the regulatory function of CFH, increasing complement activation, and subsequently 

causing an inflammatory response and cell death.3-6,13,40-42

CFH is located in a large region of linkage disequilibrium. Apart from Y402H, many other variants 

have been shown to be associated with increased risk of AMD. A non-coding variant (rs1410996) 

was found to have an even stronger association than Y402H.43-44 In particular in Asian populations, 

the Y402H variant was not significantly associated with AMD, whereas other variants including 

rs1410996 were.24,35 The genes in the vicinity of CFH, such as CFHR1-5, have gene functions similar to 

CFH, and have also been associated with AMD. A haplotype carrying a deletion of CFHR1 and CFHR3 

(delCFHR1/3) was reported to have a protective effect, and occurred in 20% of controls and 8% of 

cases.45-46 The proteins encoded by these genes are absent in serum of persons who are homozygous 

for delCFHR1/3. 45 CFHR1 and CFHR3 contain a C3-binding site and deletion of these genes may 

reduce competition for the binding of CFH to C3b, enhancing inhibitory activity by CFH. DelCFHR1/3 

was more frequent in African Americans (16%), and less common in Hispanics (6.8%) and European 

Americans (4.7%).47

Complement Factor B (CFB)/Complement Component 2 (C2)

Complement factor B (CFB) and complement component 2 (C2) are activators of the alternative and 

classical pathways, respectively. Four variants in the CFB and C2 gene located on chromosome 6p21 

have been shown to have a strong protective effect: CFB R32Q, which is in nearly complete linkage 

disequilibrium with C2 IVS10, and CFB L9H, which is in nearly complete linkage disequilibrium with 

C2 E318D.44,48-54

Genetic and functional data suggest that CFB variants rather than C2 variants are likely to have 

caused the observed protection. Only the CFB R32Q variant results in inferior C3b binding affinity, 

leading to a lower potential to amplify complement activation.55-56 Moreover, the majority of proteins 

of the alternative pathway (e.g., CFH, CFB) are present in drusen, whereas proteins from the classical 

pathway (e.g., C2) are not.57-58 Good epidemiologic analysis with adjustment for confounders showed 

that the association with C2 R32Q was robust (OR, 0.21; 95% CI, 0.11–0.39), while the association 
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with C2 E318D became insignificant (OR, 0.60; 95% CI, 0.25– 1.47).49 These data suggest that the C2 

variants show residual association with AMD originating from their high linkage disequilibrium with 

CFB.

Complement Component 3 (C3)

Complement component C3 is the convergence point of all complement pathways (classical, lectin, 

and alternative). Activation of C3 is crucial for the formation of membrane attack complexes that 

leads to cell lysis.59 The C3 gene is located on chromosome 19p13.3–13.2. The amino acid changes 

caused by the C3 variants R102G and P314L may alter the binding capacity of C3 to pathogenic cell 

surfaces or other complement proteins.59-61 A causal relation with AMD is plausible, since C3 mRNA 

is present in neural retina, choroids, and retinal pigment epithelium57; its cleavage product C3a is 

present in drusen,1,62 and C3a can induce vascular endothelial growth factor expression and promote 

choroidal neovascularization.63

The two functional variants, R102G (rs2230199) and P314L (rs1047286), are in high linkage 

disequilibrium. They have both been identified as genetic risk factors for AMD.64-72 R102G has also 

been implicated in the progression from the earlier stages of AMD to late AMD.51 The two initial 

investigations as well as later studies concluded that R102G is more significant in AMD causality than 

P314L.64-65,67-69,72-73

An allele-dose effect for R102G was observed in the various Caucasian studies with an increased risk 

of 1.4–1.7 for heterozygotes and 1.8–3.3 for homozygotes. The Rotterdam Study found associations 

of the C3 variants with early as well as late AMD, and reported that the risk increase was most 

prominent for the mixed type of AMD (both geographic atrophy and neovascular AMD present).68 

The effect of the C3 alleles is independent from CFH Y402H and ARMS2 A69S.68-69

Complement Factor I (CFI)

The CFI protein is regulated by CFH and functions as a cofactor for the cleavage and inactivation of 

C3b. Recently, several variants near the CFI gene have been associated with risk of AMD in Caucasian 

as well as Asian populations74-79 In a Japanese study, rs10033900 had a protective effect with OR 

0.28 (95% CI, 0.11–0.69) for homozygous carriers of the minor allele. No association was found for 

heterozygous carriers (OR, 0.99; 95% CI, 0.61–1.62). A recent genome-wide association study found 

that the major allele of rs2285714 was associated with an increased risk of 1.31 (95% CI, 1.18–1.45). 

Ennis et al. reported significantly (P < 0.05) protective effects for rs11728699, rs6854876, rs7439493, 

and rs13117504 with ORs ranging from 0.68 to 0.74 (P < 0.05), and these SNPs also tagged significant 

protective (GCAG, OR 0.69) and causative (TGGC, OR 1.34) haplotypes.75-77

The ARMS2-HTRA1 (10q26) Locus

Linkage studies had already identified a susceptibility locus at chromosome 10q26. GWA studies 

conformed this locus as the second major contributor to the pathogenesis of AMD.7,81-98 As this region 

contains many genes in high linkage disequilibrium (Pleckstrin Homology Domain-containing Protein 

family A member 1 (PLEKHA1), LOC387715 (or Age-related maculopathy susceptibility gene 2, ARMS2) 

and high temperature requirement factor A1 (HTRA1) gene), controversy exists about which gene is 

the AMD susceptibility gene.

In the ARMS2 gene, rs10490924 has repeatedly been reported to increase risk of AMD up to 15 

times.7,85-86,89-92,94,98-97 This functional SNP causes an A69S change, and has been described as the 

causal SNP that by itself could explain the bulk of the association between the 10q26 region and 
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AMD.91 The precise function of ARMS2 in AMD remains to be elucidated. Disorganized mitochondrial 

membranes, as well as decreased number of mitochondria in retinal pigment epithelium cells of 

AMD donors have provided evidence of mitochondrial dysfunction in AMD.99-100 This suggests that 

ARMS2 may jeopardize mitochondrial function, and consequently lead to the formation of reactive 

oxygen species, apoptosis, and AMD.94,99-103 Moreover, immunohistochemical studies located the 

ARMS2 protein to the mitochondrial outer membrane, in particular of rods and cones.91,94 However, 

its presence has also been reported in the cellular cytosol104 and the extracellular matrix.105

Meta-analyses of the HTRA1 gene reported an increased risk of AMD for homozygous (OR, 9.26; 

95% CI, 7.27–11.91) as well as heterozygous (OR, 2.33; 95% CI, 2.01–2.71) carriers of the rs11200638 

risk allele.106 Stratified analyses revealed that rs11200638 was significantly associated with CNV but 

not with GA, and that the causative effect was stronger in Caucasians than in Asians.107-108 Also for 

this gene, various lines of evidence support involvement in AMD. The rs11200638 risk allele has 

been associated with higher levels of HTRA1 mRNA and protein in some studies,87,98,109-110 although 

two other studies with larger datasets could not validate this finding in heterologous expression 

systems.91,111 Furthermore, HTRA1 may inhibit signaling of TGF-ß proteins, which have been reported 

to act as negative growth regulators in the retina and RPE.112-114 In addition, HTRA1 may stimulate 

the degradation of extracellular matrix through enhanced expression of matrix metalloproteases. 

Consequently, overexpression of HTRA1 may affect the integrity of Bruch’s membrane and RPE 

contributing to AMD development. Recently, Richardson et al. found rs3793917 (located between 

ARMS2 and HTRA1) to be most associated with AMD (OR, 3.45; 95% CI, 2.36–5.05), and indicated 

that the intergenic region between this SNP and HTRA1 rs11200638 was most likely to confer AMD 

risk.96 However, they could not distinguish rs3793917 from rs11200638 and rs10490924 to explain 

causality since they were all in high linkage disequilibrium.

Common haplotypes encompassing both the ARMS2 and the HTRA1 genes have also been linked 

to AMD. Gibbs et al. described a common haplotype TAT tagged by rs10490924, rs11200638, and 

rs2293870 that significantly predisposed to AMD (P = 2.70 × 10−9), and a haplotype GGG that was 

significantly protective against AMD (P = 0.003).95 Yang et al. also found a haplotype T-G-Wt-G tagged 

by rs2736911, rs10490924, in/del/Wt, and rs11200638, which was protective in Caucasian as well as 

Chinese populations (P < 0.007).98 They also observed that the in/del or the rs11200638 risk allele 

by itself was insufficient to alter HTRA1 expression, and found that a common disease haplotype 

including both the in/del and rs11200638 leads to upregulation of HTRA1. Hence, they proposed 

a binary model where downregulation of ARMS2 and concomitant upregulation of HTRA1 best 

explained the risk associated with the 10q26 locus. Further functional analyses in larger datasets are 

warranted to conclude what the key genetic contributors in the 10q26 locus are.

The Lipid-Related Genes

Apolipoprotein E (APOE)

Apolipoprotein E is a key regulator of lipid and cholesterol transport in the central nervous system,115 

and has been linked to various neurodegenerative and cardiovascular diseases (e.g., Alzheimer’s 

disease and stroke).116-118 In the eye, APOE is expressed in photoreceptor cells, retinal ganglion cells, 

Müller cells, retinal pigment epithelium, Bruch’s membrane, choroid, and in the disease-associated 

lesions: drusen and basal laminar deposits.57,58,119-123 There are three common allelic variants of the 

APOE gene: ε2, ε3, and ε4, with ε3 being the most prevalent.124-125 The majority of studies support 

a protective effect of the APOE ε4 allele against AMD,119,126-138 though in some reports, this inverse 

association failed to reach statistical significance.127,131,133,137-138 Stratification of late AMD into GA and 
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CNV showed that the greatest protective effect for the ε3ε4 genotype was in individuals with GA (OR 

0.35, 95% CI 0.13–0.92).132 The APOE ε2 allele has mainly been associated with a non-significant but 

increased risk of AMD.119,126,129-132,134,137

Several studies reported that ε4 carriers have significantly lower CRP levels than noncarriers, especially 

compared to ε2 carriers. CRP level reportedly decreases in a dose-dependent order of ε2/ ε2, ε2/ε3, 

ε3/ε3, ε2/ε4, ε3/ε4, and ε4/ε4.140-145 In addition, APOE ε2 appears to enhance expression by RPE cells 

of the vascular endothelial growth factor and fibroblast growth factor,146 whereas their expression 

is reportedly suppressed by APOE ε4.136,147 This indicates that APOE ε2 induces neovascularization by 

altering angiogenic cytokines, whereas APOE ε4 limits this process. And in contrast to ε2, APOE ε4 has 

positive charges which diminish hydrophobicity of Bruch’s membrane, and results in better clearance 

of debris. Moreover, ε4 carriers reportedly have 36% lower risk of hypertension than noncarriers.148 

Another interesting finding is that APOE ε4 levels seem to decrease with advancing age,145 which 

may reduce transport of lipids and cell debris, culminating in a higher rate of AMD in older age. 

APOE also plays an important role in the maintenance of retinal membrane cell: Lipids are released 

from the degenerating cell membrane and astrocytes react by synthesizing APOE to bind the free 

cholesterol and lipids and to distribute them for reuse in cell membrane biosynthesis.149-151 Based 

on the cumulative empirical evidence and pooled data outlined above, it can be proposed that the 

APOE ε4 offers a reduced risk for onset, severity, and progression rate of AMD, in contrast to APOE ε2.

Hepatic Lipase (LIPC)

Two parallel published genome-wide association studies (GWAS) reported causative variants for the 

LIPC gene.76,152 LIPC has been associated with high-density lipoprotein cholesterol (HDL-c) levels in 

blood153-154 and is involved in mediating the uptake of HDL-c at the cell surface.155 LIPC is expressed 

in the retina and modification of HDL-related efficiency could influence the risk of AMD, because 

HDL is an important transporter of lutein/zeaxanthin.152,156-157 The common allele of rs493258 near 

the LIPC gene on chromosome 15q22 (OR, 1.14; 95% CI, 1.09-1.20; frequency in controls ~0.56; P = 

1.3 × 10-7) increased the risk of AMD, whereas the minor allele of rs10468017, a functional promoter 

variant, (OR, 0.82; 95% CI, 0.77-0.88; frequency in controls ~0.30; P = 1.34 × 10-8) had a protective 

effect. However, confirmation of the protective variant was achieved after targeted examination of 

the suggestive markers of the GWAS peformed by Neale et al.152

Cholesterylester Transfer Protein (CETP)

The rare allele of rs3764261 at the CETP gene on chromosome 16q21 (OR, 1.19; 95% CI, 1.12-1.27; 

frequency in controls ~0.32; P = 7.4 × 10-7) in associated with an increased risk of AMD76 and has 

recently been replicated by Yu et al.158 CETP plays an important role in the production and degradation 

of HDL-c and is expressed in the retina.152,156

Lipoprotein Lipase (LPL)

Chen et al. (2010) reported also the variant rs12678919 at LPL on chromosome 8p22 (OR, 1.38; 95% 

CI, 1.11-1.43; P = 3 × 10-3). This variant was not significant but consistent with the hypothesis that 

HDL metabolism is associated with AMD pathogenesis; LPL plays, like CETP, an important role in 

the production and degradation of HDL-c.152,156 Recently, an association, although not significant, 

between LPL rs12678919 and late AMD was suggested by Peter et al.(OR, 0.5, 95% CI, 0.2—1.2, P = 

0.10) for carriers of 1 or 2 G alleles compared to non-carriers.79 The G allele increases serum HDL levels 

(P < 10-10, 2.44 mg/dl increase per G allele), confirming the role of LPL in the HDL metabolism.153
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ATP-Binding Cassette Subfamily A Member 1 (ABCA1)

ABCA1 is involved in mediating the uptake of HDL-c at the cell surface and have been shown to 

be expressed in the retina.152,155-156 The variant rs1883025 near ABCA1 on chromosome 9q22 (OR, 

1.15; 95% CI, 1.07-1.23; P = 5.6 × 10-4) has been suggested by Chen et al. to be associated with 

AMD.76 Several other studies confirmed this suggestion and showed a significantly higher risk allele 

frequency in AMD patients compared with control individuals (P = 0.00027).152,158-160

With increasing age, lipids and cholesterol accumulate underneath the RPE and are constituents of 

drusen.57,161 The HDL-c associated variants might affect the formation of drusen and subsequently 

the development of AMD. The ‘non risk’ TT-genotype of ABCA1 rs1883025 had a significant protective 

effect for intermediate and large drusen; (OR, 0.48; 95% CI; 0.27-0.85), (OR, 0.41; 95% CI, 0.23-0.74), 

respectively.160

Collagen related genes

Alpha chain of type VIII collagen (COL8A1)

The COL8A1 gene on chromosome 3 encodes for one of the alpha chains of type VIII collagen, a major 

component of the multiple basement membranes in the eye, including Bruch’s membrane and the 

choroidal stroma.152 The intronic variant rs13095226 was associated with a slight increased risk of 

AMD (OR, 1.24; 95% CI, 1.13-1.35; P = 2.50 × 10-6).162

Alpha chain of type X collagen (COL10A1)

Recently, a genome-wide association study (GWAS) has published a novel loci, rs1999930 near the 

COL10A1 gene (OR, 0.87; 95% CI, 0.83-0.91; P = 1.1 × 10-10).158 COL10A1 is a short-chain collagen 

expressed by hypertrophic chondrocytes during endochondral ossification. Although no relation 

of COL10A1 with the retina has been found, the previous finding of the collagen gene COL8A1, 

implicates a role for collagen in a causal pathway for AMD.

Other genes

Tissue Inhibitor of Metalloproteinases-3 (TIMP3)

Candidate gene analyses initially found no evidence of linkage or association between AMD and 

TIMP3 on chromosome 22q12.1–13.2.163,164 Recently, a genome-wide association study (GWAS) 

found the region near TIMP3 to be a susceptibility locus,76 which was previously reported by one 

linkage study.165 TIMP3 is a metalloproteinase involved in degradation of the extracellular matrix in 

the retina,166 and is mutated in Sorby’s fundus dystrophy.167 The common variant rs9621532, nearby 

TIMP3 was associated with increased risk of AMD (OR, 1.41; 95% CI, 1.27-1.57; frequency in controls 

~0.95; P = 1.1 × 10-11).76

Vascular Endothelian Growth Factor A (VEGFA)

VEGFA is a member of the VEGF family and functions to increase vascular permeability, angiogenesis, 

cell growth and migration of endothelial cells. VEGFA is also a target in the treatment of CNV with 

anti-VEGF therapy. Haines et al found a strong association for the variant rs2010963 with linkage-

analysis (LOD score = 1.32, P= 0.0001) in early and late AMD, but a moderate result in a later case-

control setting (P = 0.02).168 Recently a new variant near the VEGFA gene was published.158 The variant 

rs4711751 on 6p12 near VEGFA (OR, 1.15; 95% CI, 1.10-1.21; P=8.7 × 10-9) was not in LD with the 

earlier found variant, indicating a novel region associated with AMD. Unfortunately the variant found 

by Haines et al could not be replicated.
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Tumor necrosis factor receptor superfamily 10 a (TNRSF10A)

TNRSF10A encodes for TRAILR1, a TRAIL receptor, which is broadly expressed in human adult RPE.166 

Arakawa et al reported a variant, rs13278062 near TNRSF10A on chromosome 8p21 (OR, 0.73; 95% 

0.67-0.80; P = 1.03 × 10-12) to be associated with exudative AMD in a Japanese population.169

GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS

CFH Y402H

The Rotterdam Study (RS) reported interaction between CFH Y402H and smoking, C-reactive protein 

level, and erythrocyte sedimentation rate (ESR),13 meaning that the joint effect of each determinant 

with Y402H was significantly greater than the sum of the independent effects. Compared to persons 

with the homozygous non-risk (TT) genotype and normal ESR levels, persons with the homozygous 

risk (CC) genotype and elevated ESR levels had a risk of 20.2 (95% CI, 9.5–43.0) for late AMD. Higher 

serum CRP levels in persons with the CC-genotype augmented AMD risk to 27.7 (95% CI, 10.7–72.0) 

compared to persons with the lowest CRP levels and the TT-genotype.

Current smokers with the CC-genotype had an OR of 34.0 (95% CI, 13.0–88.6) for late AMD relative to 

individuals with the TT-genotype who never smoked. Other studies also observed stronger effects 

of CFH Y402H among smokers.18,20,22,170-172 DeAngelis et al. (2007) further specified that smoking ten 

pack-years or more and having the CC-genotype was estimated to increase risk of CNV 144-fold 

compared with smoking less than ten pack-years and having the CT- or TT-genotype.22

AREDS reported a significant interaction between CFH Y402H and BMI.18 Higher BMI (≥25) did not 

increase the risk of AMD for persons with the TT-genotype (OR 0.7; 95% CI 0.4–1.2), whereas it did 

increase risk for those with the CT- (OR 2.2; 95% CI 1.3–4.0) and CC-genotype (OR 5.9; 95% CI 3.1–11.4).

Gold et al. reported that the protection conferred by C2 and/or CFB was strongest in persons with 

the CFH CC-genotype (OR = 0.27), intermediate in persons with the CT-genotype (OR = 0.36), and 

weakest in persons with the TT-genotype (OR = 0.44).48 However, the confidence intervals of all these 

estimates overlapped.

Two studies have examined interaction between genetic variants and antioxidants in the 

development of late AMD.173,174 AREDS calculated the risk of progression to late AMD for the CFH 

Y402H and ARMS2 A69S genotypes in various antioxidant treatment arms.173 A high zinc dosage was 

most protective against AMD in persons with the homozygous non-risk CFH genotype, but produced 

the greatest, albeit non-significant, protection in persons carrying the risk variant of ARMS2. The Blue 

Mountains Eye Study (BMES) found that high fish intake resulted in greater protection against late 

AMD in homozygous carriers of Y402H than in non-carriers.174 In addition, the RS showed that higher 

dietary intake of zinc, w-3 fatty acids, b-carotene, and lutein/zeaxanthin can attenuate the incidence 

of early AMD in those carrying these genetic risk variants (Figure 1).175
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R R

R R
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FIGURE 1 - Risks for AMD stratified for genotype and nutrient intake

A - D. Joint effect of dietary nutrient intake and CFH Y402H genotype on the risk of Early AMD.

E – F. Joint effect of dietary nutrient intake and LOC387715 (ARMS2) A69S genotype on the risk of Early AMD.

R is the common reference group.

HRs are estimates of the relative risk of Early AMD, and represent the risk of disease (Early AMD vs No AMD) 

in the various genetic-environmental risk groups divided by the risk of disease (Early AMD vs No AMD) in the 

common reference group (noncarriers - 1st tertile of nutrient intake). HRs are estimated with Cox regression 

analyses and included age, sex, smoking status, and atherosclerosis.
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ARMS2-HTRA1

Although not all studies reported statistical interaction, the majority supported a strong combined 

effect of smoking and ARMS2 A69S in AMD susceptibility.84,170,176-182 Interaction analyses by Schmidt et 

al. between number of pack-years of smoking and A69S genotypes revealed that in affected persons, 

the frequency of the homozygous risk (TT) genotype linearly increased with increasing pack-years 

irrespective of age and gender, with a corresponding decrease in the homozygous non-risk (GG) 

genotype frequencies (P < 0.05).181 When comparing current smokers to never smokers, risks for 

heterozygotes (GT) increased 3- to 6-fold, while for the homozygotes (GG), risk increased 10- to 27-

fold.170,176

Combined effects on the likelihood of early or late AMD were demonstrated by the BMES for the A69S 

GT- and TT-genotypes with the marker’s high-sensitivity CRP (ORs, 1.2 for the highest tertile alone, 

1.6 for GT- and TT-genotypes alone, and 2.2 for both GT and TT-genotypes plus the highest tertile, 

compared with the GG-genotype with the two lower tertiles), IL-6 (corresponding ORs, 1.1, 1.6, and 

2.2), sICAM-1 (ORs, 1.0, 1.5, and 2.3, respectively), and PAI-1 (ORs, 1.3, 1.7, and 2.3, respectively), but 

not with WCC, fibrinogen, homocysteine, and von Willebrand factor.179

Interaction with anti-oxidants and ARMS2 was studied within the same settings as CFH, and resulted 

in similar effects (Figure 1).

Risk of AMD due to the Combined Effect of CFH and ARMS2/HTRA1 SNPs

Several studies have investigated the combined effect of CFH Y402H and ARMS2 A69S/HTRA1 

rs11200638.7,38,87,170,178,183-185,188 Persons with homozygous risk genotypes at both loci (CFH CC –ARMS2 

TT) compared to the non-risk genotype (TTGG) had ORs ranging from 27 in a Finnish case-control 

study178 to 228 in the Caucasian clinic-based AREDS.176 For persons with the homozygous risk genotype 

for both CFH Y402H and HTRA1 rs11200638, the combined ORs ranged from 8 in a Japanese case-

control study184 to 193 in AREDS relative to persons with no risk alleles at either locus.184 In addition 

to the combined risk conferred by CFH Y402H and ARMS2 A69S, Schmidt et al. also observed an extra 

risk of AMD caused by smoking.181 Compared to the nonsmoker/TT(Y402H)/GG(A69S) combination, 

the OR for individuals with the CC-genotype at Y402H and the TT-genotype at ARMS2 increased from 

10.2 for nonsmokers to 34.5 for smokers. Seitsonen et al. also found that smoking caused an extra 

risk for AMD, but only in connection with sex and C3 genotype.178 The univariate ORs for carrying at 

least one risk allele of CFH Y402H was 5.45 (95% CI, 2.18–16.83), of ARMS2 A69S was 4.89 (95% CI, 

1.73–16.43), of C3 R102G was 2.12 (95% CI, 0.52–8.70), and for smoking was 3.22 (95% CI 1.81–6.09), 

while the joint OR for the three loci and smoking was 74.3 (95% CI, 10.81–2123.6).

APOE gene

Debate remains regarding the gender-specific role of the APOE alleles in the development or 

progression of AMD. Schmidt et al. found significant interaction between ε2-carrier status and sex.130 

The ε2-allele conferred a risk of 0.74 (95% CI, 0.52–1.06) in women, and of 1.54 (95% CI, 0.97–2.45) 

in men. Hence, the authors suggested that an increased risk of AMD due to the ε2-allele may only 

be conferred to men. Conversely, Baird et al. found that ε2-carriers had a significant 4.8-fold (95% 

CI, 1.19–19.09) increased risk of AMD progression compared to ε4-carriers and a nearly significant 

2.8-fold (95% CI, 0.96–19.09) increased risk compared to ε3-carriers.132 Since this finding was only 

present in women, the authors suggested that there may be a gender-specific role in progression 

of AMD in persons with an ε2-allele. Fritsche et al. could not corroborate any gender-specific role of 

the APOE-alleles.186
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Schmidt et al.suggested a modifying effect of APOE genotypes on the smoking-associated risk of 

AMD, particularly for CNV.128,187 The effect of smoking was most deleterious for APOE ε2 carriers, 

compared to APOE ε4 carriers and persons with the APOE ε3/ε3 genotype. The increase in CNV risk 

due to smoking was greatest in APOE ε2 carriers, with genotypespecific risks increasing from 1.9 for 

APOE ε4 carriers (P = 0.11) to 2.2 for APOE ε3/ε3 homozygotes (P = 0.007) to 4.6 (P = 0.001) for APOE 

ε2 carriers, compared to non-smoking APOE ε3/ε3 persons. In other studies, the sample sizes of each 

subgroup were too small to determine statistical significance.134,139

CONCLUSION

Since the first assumption of a familial component to AMD, 15 genes associated with the disease 

have been identified. These genes have shed light on the pathogenesis of AMD, and have increased 

our knowledge on the causes of AMD enormously.

Most of the genetic risk is explained by only two genes, CFH and ARMS2/HTRA1. The risk variants in 

these genes occur at a much higher frequency in the general population than the actual disease 

does, provoking the view that life style factors ultimately determine whether these genes will have 

a deleterious effect. Interaction with life style factors such as smoking and BMI has been difficult to 

prove, but the first reports on the complexity of gene-environment modulations have appeared.

Future genetic research will make use of the new molecular methodology such as exome and whole 

genome sequencing. This will undoubtedly lead to finding more risk variants, and more information 

on causal pathways for AMD. Large genetic epidemiologic collaborations will be able to address 

the interaction with environmental factors better than single studies can, and they will also help 

elucidate AMD pathogenesis. It is expected that these developments will open up new avenues for 

long-lasting and successful treatments for AMD.



165Genetics of AMD

5

REFERENCES

1.  Rodriguez de Cordoba S, Esparza-Gordillo J, Goicoechea de Jorge E et al. (2004) The human complement 

factor H: functional roles, genetic variations and disease associations. Mol Immunol 41:355–367

2.  Johnson LV, Leitner WP, Staples MK et al (2001) Complement activation and inflammatory processes in 

drusen formation and age related macular degeneration. Exp Eye Res 73:887–896

3. Hageman GS, Anderson DH, Johnson LV et al (2005) A common haplotype in the complement regulatory 

gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci 

USA 102:7227–7232

4.  Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular 

degeneration. Science 308:385–389

5.  Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related 

macular degeneration. Science 308:419–421

6. Edwards AO, Ritter R III, Abel KJ et al (2005) Complement factor H polymorphism and age-related macular 

degeneration. Science 308:421–424

7.  Rivera A, Fisher SA, Fritsche LG et al (2005) Hypothetical LOC387715 is a second major susceptibility gene 

for age-related macular degeneration, contributing independently of complement factor H to disease risk. 

Hum Mol Genet 14:3227–3236

8.  Souied EH, Leveziel N, Richard F et al (2005) Y402H complement factor H polymorphism associated with 

exudative age-related macular degeneration in the French population. Mol Vis 11:1135–1140

9.  Zareparsi S, Branham KE, Li M et al (2005) Strong association of the Y402H variant in complement factor H at 

1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77:149–153

10. Baird PN, Islam FM, Richardson AJ et al (2006) Analysis of the Y402H variant of the complement factor H gene 

in age-related macular degeneration. Invest Ophthalmol Vis Sci 47:4194–4198

11. Chen LJ, Liu DT, Tam PO et al (2006) Association of complement factor H polymorphisms with exudative 

agerelated macular degeneration. Mol Vis 12:1536–1542

12. Conley YP, Jakobsdottir J, Mah T et al (2006) CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility 

to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum Mol Genet 15:3206–3218

13. Despriet DD, Klaver CC, Witteman JC et al (2006) Complement factor H polymorphism, complement 

activators, and risk of age-related macular degeneration. JAMA 296:301–309

14.  Fuse N, Miyazawa A, Mengkegale M et al (2006) Polymorphisms in Complement Factor H and Hemicentin-1 

genes in a Japanese population with dry-type age-related macular degeneration. Am J Ophthalmol 

142:1074–1076

15.  Lau LI, Chen SJ, Cheng CY et al (2006) Association of the Y402H polymorphism in complement factor H gene 

and neovascular age-related macular degeneration in Chinese patients. Invest Ophthalmol Vis Sci 47:3242–

3246

16. Magnusson KP, Duan S, Sigurdsson H et al (2006) CFH Y402H confers similar risk of soft drusen and both 

forms of advanced AMD. PLoS Med 3:e5

17. Schaumberg DA, Christen WG, Kozlowski P et al (2006) A prospective assessment of the Y402H variant in 

complement factor H, genetic variants in C-reactive protein, and risk of age-related macular degeneration. 

Invest Ophthalmol Vis Sci 47:2336–2340

18.  Seddon JM, George S, Rosner B et al (2006) CFH gene variant, Y402H, and smoking, body mass index, 

environmental associations with advanced age-related macular degeneration. Hum Hered 61:157–165

19.  Seitsonen S, Lemmela S, Holopainen J et al (2006) Analysis of variants in the complement factor H, the 

elongation of very long chain fatty acids-like 4 and the hemicentin 1 genes of age-related macular 

degeneration in the Finnish population. Mol Vis 12:796–801

20. Sepp T, Khan JC, Thurlby DA et al (2006) Complement factor H variant Y402H is a major risk determinant for 

geographic atrophy and choroidal neovascularization in smokers and nonsmokers. Invest Ophthalmol Vis 

Sci 47:536–540

21. Brantley MA Jr, Fang AM, King JM et al (2007) Association of complement factor H and LOC387715 genotypes 

with response of exudative age-related macular degeneration to intravitreal bevacizumab. Ophthalmology 

114:2168–2173

22. DeAngelis MM, Ji F, Kim IK et al (2007) Cigarette smoking, CFH, APOE, ELOVL4, and risk of neovascular age-

related macular degeneration. Arch Ophthalmol 125:49–54

23. Fisher SA, Rivera A, Fritsche LG et al (2007) Assessment of the contribution of CFH and chromosome 10q26 

AMD susceptibility loci in a Russian population isolate. Br J Ophthalmol 91:576–578

24. Mori K, Gehlbach PL, Kabasawa S et al (2007) Coding and noncoding variants in the CFH gene and cigarette 



166 Chapter 5.1

smoking influence the risk of age-related macular degeneration in a Japanese population. Invest Ophthalmol 

Vis Sci 48:5315–5319

25. Pulido JS, Peterson LM, Mutapcic L et al (2007) LOC387715/HTRA1 and complement factor H variants in 

patients with age-related macular degeneration seen at the mayo clinic. Ophthalmic Genet 28:203–207

26. Tedeschi-Blok N, Buckley J, Varma R et al (2007) Population-based study of early age-related macular 

degeneration: role of the complement factor H Y402H polymorphism in bilateral but not unilateral disease. 

Ophthalmology 114:99–103

27. Wegscheider BJ, Weger M, Renner W et al (2007) Association of complement factor H Y402H gene 

polymorphism with different subtypes of exudative age-related macular degeneration. Ophthalmology 

114:738–742

28. Chowers I, Cohen Y, Goldenberg-Cohen N et al (2008) Association of complement factor H Y402H 

polymorphism with phenotype of neovascular age related macular degeneration in Israel. Mol Vis 14:1829–

1834

29. Chu J, Zhou CC, Lu N et al (2008) Genetic variants in three genes and smoking show strong associations 

with susceptibility to exudative age-related macular degeneration in a Chinese population. Chin Med J 

121:2525–2533

30. Droz I, Mantel I, Ambresin A et al (2008) Genotype-phenotype correlation of age-related macular 

degeneration: influence of complement factor H polymorphism. Br J Ophthalmol 92:513–517

31. Ng TK, Chen LJ, Liu DT et al (2008) Multiple gene polymorphisms in the complement factor H gene are 

associated with exudative age-related macular degeneration in Chinese. Invest Ophthalmol Vis Sci 49:3312–

3317

32. Xu Y, Guan N, Xu J et al (2008) Association of CFH, LOC387715, and HTRA1 polymorphisms with exudative 

age-related macular degeneration in a northern Chinese population. Mol Vis 14:1373–1381

33. Ziskind A, Bardien S, van der Merwe L et al (2008) The frequency of the H402 allele of CFH and its involvement 

with age-related maculopathy in an aged Black African Xhosa population. Ophthalmic Genet 29:117–119

34. Ricci F, Zampatti S, D’Abbruzzi F et al (2009) Typing of ARMS2 and CFH in age-related macular degeneration: 

case-control study and assessment of frequency in the Italian population. Arch Ophthalmol 127:1368–1372

35. Cui L, Zhou H, Yu J et al (2010) Noncoding variant in the complement factor H gene and risk of exudative 

age-related macular degeneration in a Chinese population. Invest Ophthalmol Vis Sci 51:1116–1120

36. Gao Y, Li Y, Xu L et al (2010) Complement factor H polymorphism in age-related maculopathy in the Chinese 

population: the Beijing Eye Study. Retina 30:443–446

37. Liu X, Zhao P, Tang S et al (2010) Association study of complement factor H, C2, CFB, and C3 and age-related 

macular degeneration in a Han Chinese population. Retina 30:1177–1184

38. Losonczy G, Fekete A, Voko Z et al (2011) Analysis of complement factor H Y402H, LOC387715, HTRA1 

polymorphisms and ApoE alleles with susceptibility to age-related macular degeneration in Hungarian 

patients. Acta Ophthalmol 89:255–262

39. Nonyane BA, Nitsch D, Whittaker JC et al (2010) An ecological correlation study of late age-related macular 

degeneration and the complement factor H Y402H polymorphism. Invest Ophthalmol Vis Sci 51:2393–2402

40. Johnson PT, Betts KE, Radeke MJ et al (2006) Individuals homozygous for the age-related macular 

degeneration risk-conferring variant of complement factor H have elevated levels of CRP in the choroid. 

Proc Natl Acad Sci USA 103:17456–17461

41.  Laine M, Jarva H, Seitsonen S et al (2007) Y402H polymorphism of complement factor H affects binding 

affinity to C-reactive protein. J Immunol 178:3831–3836

42. Skerka C, Lauer N, Weinberger AA et al (2007) Defective complement control of factor H (Y402H) and FHL-1 

in age-related macular degeneration. Mol Immunol 44:3398–3406

43. Li M, Atmaca-Sonmez P, Othman M et al (2006) CFH haplotypes without the Y402H coding variant show 

strong association with susceptibility to age-related macular degeneration. Nat Genet 38:1049–1054

44. Maller J, George S, Purcell S et al (2006) Common variation in three genes, including a noncoding variant in 

CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38:1055–1059

45. Hughes AE, Orr N, Esfandiary H et al (2006) A common CFH haplotype, with deletion of CFHR1 and CFHR3, is 

associated with lower risk of age-related macular degeneration. Nat Genet 38:1173–1177

46. Spencer KL, Hauser MA, Olson LM et al (2008) Deletion of CFHR3 and CFHR1 genes in age-related macular 

degeneration. Hum Mol Genet 17:971–977

47. Cann HM, de Toma C, Cazes L et al (2002) A human genome diversity cell line panel. Science 296:261–262

48. Gold B, Merriam JE, Zernant J et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes 

is associated with age-related macular degeneration. Nat Genet 38:458–462

49. Spencer KL, Hauser MA, Olson LM et al (2007) Protective effect of complement factor B and complement 



167Genetics of AMD

5

component 2 variants in age-related macular degeneration. Hum Mol Genet 16:1986–1992

50. Jakobsdottir J, Conley YP, Weeks DE et al (2008) C2 and CFB genes in age-related maculopathy and joint 

action with CFH and LOC387715 genes. PLoS One 3:e2199

51. Francis PJ, Hamon SC, Ott J et al (2009) Polymorphisms in C2, CFB and C3 are associated with progression to 

advanced age related macular degeneration associated with visual loss. J Med Genet 46:300–307

52. McKay GJ, Silvestri G, Patterson CC et al (2009) Further assessment of the complement component 2 and 

factor B region associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50:533–539

53. Richardson AJ, Islam FM, Guymer RH et al (2009) Analysis of rare variants in the complement component 

2 (C2) and factor B (BF) genes refine association for age-related macular degeneration (AMD). Invest 

Ophthalmol Vis Sci 50:540–543

54. Kaur I, Katta S, Reddy RK et al (2010) The involvement of complement factor B and complement component 

C2 in an Indian cohort with age-related macular degeneration. Invest Ophthalmol Vis Sci 51:59–63

55. Lokki ML, Koskimies SA (1991) Allelic differences in hemolytic activity and protein concentration of BF 

molecules are found in association with particular HLA haplotypes. Immunogenetics 34:242–246

56. Montes T, Tortajada A, Morgan BP et al (2009) Functional basis of protection against age-related macular 

degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci USA 

106:4366–4371

57. Mullins RF, Russell SR, Anderson DH et al (2000) Drusen associated with aging and age-related macular 

degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, 

amyloidosis, and dense deposit disease. FASEB J 14:835–846

58. Crabb JW, Miyagi M, Gu X et al (2002) Drusen proteome analysis: an approach to the etiology of age-related 

macular degeneration. Proc Natl Acad Sci USA 99:14682–14687

59. Janssen BJ, Christodoulidou A, McCarthy A et al (2006) Structure of C3b reveals conformational changes that 

underlie complement activity. Nature 444:213–216

60. Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between 

innate and acquired immunity. Immunol Rev 180:35–48

61. Nishida N, Walz T, Springer TA (2006) Structural transitions of complement component C3 and its activation 

products. Proc Natl Acad Sci USA 103:19737–19742

62. Hageman GS, Luthert PJ, Victor Chong NH et al (2001) An integrated hypothesis that considers drusen 

as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-

related macular degeneration. Prog Retin Eye Res 20:705–732

63. Nozaki M, Raisler BJ, Sakurai E et al (2006) Drusen complement components C3a and C5a promote choroidal 

neovascularization. Proc Natl Acad Sci USA 103:2328–2333

64. Maller JB, Fagerness JA, Reynolds RC et al (2007) Variation in complement factor 3 is associated with risk of 

age-related macular degeneration. Nat Genet 39:1200–1201

65. Yates JR, Sepp T, Matharu BK et al (2007) Complement C3 variant and the risk of age-related macular 

degeneration. N Engl J Med 357:553–561

66. Edwards AO, Fridley BL, James KM et al (2008) Evaluation of clustering and genotype distribution for 

replication in genome wide association studies: the age-related eye disease study. PLoS One 3:e3813

67. Spencer KL, Olson LM, Anderson BM et al (2008) C3 R102G polymorphism increases risk of age-related 

macular degeneration. Hum Mol Genet 17:1821–1824

68. Despriet DD, van Duijn CM, Oostra BA et al (2009) Complement component C3 and risk of age-related 

macular degeneration. Ophthalmology 116:474–480 e2

69. Park KH, Fridley BL, Ryu E et al (2009) Complement component 3 (C3) haplotypes and risk of advanced age-

related macular degeneration. Invest Ophthalmol Vis Sci 50:3386–3393

70. Scholl HP, Fleckenstein M, Fritsche LG et al (2009) CFH, C3 and ARMS2 are significant risk loci for susceptibility 

but not for disease progression of geographic atrophy due to AMD. PLoS One 4:e7418

71. McKay GJ, Dasari S, Patterson CC et al (2010) Complement component 3: an assessment of association with 

AMD and analysis of gene-gene and gene-environment interactions in a Northern Irish cohort. Mol Vis 

16:194–199

72. Thakkinstian A, McKay GJ, McEvoy M et al (2011) Systematic review and meta-analysis of the association 

between complement component 3 and age-related macular degeneration: A HuGe review and meta-

analysis. Am J Epidemiol 173:1365-1379

73. Bergeron-Sawitzke J, Gold B, Olsh A et al (2009) Multilocus analysis of age-related macular degeneration. Eur 

J Hum Genet 17:1190–1199

74. Wang J, Ohno-Matsui K, Yoshida T et al (2008) Altered function of factor I caused by amyloid beta: implication 

for pathogenesis of age-related macular degeneration from Drusen. J Immunol 181:712–720



168 Chapter 5.1

75. Fagerness JA, Maller JB, Neale BM et al (2009) Variation near complement factor I is associated with risk of 

advanced AMD. Eur J Hum Genet 17:100–104

76. Chen W, Stambolian D, Edwards AO et al (2010) Genetic variants near TIMP3 and high-denstity lipoprotein-

associated loci influence susceptibility to age-related macular degeneration. PNAS 107: 7401-7406

77. Ennis S, Gibson J, Cree AJ et al (2010) Support for the involvement of complement factor I in age-related 

macular degeneration. Eur J Hum Genet 18:15–16

78. Kondo N, Bessho H, Honda S et al (2010) Additional evidence to support the role of a common variant 

near the complement factor I gene in susceptibility to age-related macular degeneration. Eur J Hum Genet 

18:634–635

79. Peter I, Huggins GS, Ordovas JM et al. (2011) Evaluation of new and establisched age-related macular 

degeneration susceptibility genes in the women’s health initiative sight exam (WHI-SE) study. Am J 

Ophthalmol 152:1005-1013

80. Majewski J, Schultz DW, Weleber RG et al (2003) Age-related macular degeneration – a genome scan in 

extended families. Am J Hum Genet 73:540–550

81. Seddon JM, Santangelo SL, Book K et al (2003) A genome-wide scan for age-related macular degeneration 

provides evidence for linkage to several chromosomal regions. Am J Hum Genet 73:780–790

82. Iyengar SK, Song D, Klein BE et al (2004) Dissection of genome-wide scan data in extended families reveals a 

major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 74:20–39

83. Kenealy SJ, Schmidt S, Agarwal A et al (2004) Linkage analysis for age-related macular degeneration supports 

a gene on chromosome 10q26. Mol Vis 10:57–61

84. Weeks DE, Conley YP, Tsai HJ et al (2004) Age-related maculopathy: a genome-wide scan with continued 

evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 75:174–189

85. Fisher SA, Abecasis GR, Yashar BM et al (2005) Meta-analysis of genome scans of age-related macular 

degeneration. Hum Mol Genet 14:2257–2264

86. Jakobsdottir J, Conley YP, Weeks DE et al (2005) Susceptibility genes for age-related maculopathy on 

chromosome 10q26. Am J Hum Genet 77:389–407

87. Yang Z, Camp NJ, Sun H et al (2006) A variant of the HTRA1 gene increases susceptibility to age-related 

macular degeneration. Science 314:992–993

88. Dewan A, Liu M, Hartman S et al (2006) HTRA1 promoter polymorphism in wet age-related macular 

degeneration. Science 314:989–992

89. Despriet DD, Klaver CC, van Duijn CM et al. (2007) Predictive value of multiple genetic testing for age-related 

macular degeneration. Arch Ophthalmol 125:1270–1271

90. Hughes AE, Orr N, Patterson C et al (2007) Neovascular age-related macular degeneration risk based on CFH, 

LOC387715/HTRA1, and smoking. PLoS Med 4:e355

91. Kanda A, Chen W, Othman M et al (2007) A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, 

is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA 104:16227–16232

92. Seddon JM, Francis PJ, George S et al (2007) Association of CFH Y402H and LOC387715 A69S with progression 

of age-related macular degeneration. JAMA 297:1793–1800

93. Deangelis MM, Ji F, Adams S et al (2008) Alleles in the HtrA serine peptidase 1 gene alter the risk of 

neovascular age-related macular degeneration. Ophthalmology 115:1209–1215

94. Fritsche LG, Loenhardt T, Janssen A et al (2008) Age-related macular degeneration is associated with an 

unstable ARMS2 (LOC387715) mRNA. Nat Genet 40:892–896

95. Gibbs D, Yang Z, Constantine R et al (2008) Further mapping of 10q26 supports strong association of HTRA1 

polymorphisms with age-related macular degeneration. Vision Res 48:685–689

96. Richardson AJ, Islam FA, Aung KZ et al (2010) Analysis of the chromosome 10q26 region indicates the 

intergenic region between the tagSNP rs3793917 and rs11200638 in the HTRA1 gene as associated with 

age-related macular degeneration. Invest Ophthalmol Vis Sci 51:4932–4936

97. Wang G, Spencer KL, Scott WK et al (2010) Analysis of the indel at the ARMS2 3’UTR in age-related macular 

degeneration. Hum Genet 127(5):595–602

98. Yang Z, Tong Z, Chen Y et al (2010) Genetic and functional dissection of HTRA1 and LOC387715 in age-

related macular degeneration. PLoS Genet 6(2):e1000836

99. Barron MJ, Johnson MA, Andrews RM et al (2001) Mitochondrial abnormalities in ageing macular 

photoreceptors. Invest Ophthalmol Vis Sci 42:3016–3022

100. Feher J, Kovacs I, Artico M et al (2006) Mitochondrial alterations of retinal pigment epithelium in age-related 

macular degeneration. Neurobiol Aging 27:983–993

101. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment 

epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 



169Genetics of AMD

5

76:397–403

102. Jarrett SG, Lin H, Godley BF et al (2008) Mitochondrial DNA damage and its potential role in retinal 

degeneration. Prog Retin Eye Res 27:596–607

103.  Wang AL, Lukas TJ, Yuan M et al (2008) Increased mitochondrial DNA damage and down-regulation of DNA 

repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651

104. Wang G, Spencer KL, Court BL et al (2009) Localization of age-related macular degeneration-associated 

ARMS2 in cytosol, not mitochondria. Invest Ophthalmol Vis Sci 50:3084–3090

105. Kortvely E, Hauck SM, Duetsch G et al (2010) ARMS2 is a constituent of the extracellular matrix providing a 

link between familial and sporadic age-related macular degenerations. Invest Ophthalmol Vis Sci 51:79–88

106. Tong Y, Liao J, Zhang Y et al (2010) LOC3877015/HTRA1 gene polymorphisms and susceptibility to age-

related macular degeneration: A HuGe review and meta-analysis. Mol Vis 16:1958-1981

107. Chen W, Xu W, Tao Q et al (2009) Meta-analysis of the association of the HTRA1 polymorphisms with the risk 

of age-related macular degeneration. Exp Eye Res 89: 292–300

108. Tang NP, Zhou B, Wang B et al (2009) HTRA1 promoter polymorphism and risk of age-related macular 

degeneration: a meta-analysis. Ann Epidemiol 19:740–745

109. Chan CC, Shen D, Zhou M et al (2007) Human HtrA1 in the archived eyes with age-related macular 

degeneration. Trans Am Ophthalmol Soc 105:92–97; discussion 97–98

110. Tuo J, Ross RJ, Reed GF et al (2008) The HtrA1 promoter polymorphism, smoking, and age-related macular 

degeneration in multiple case-control samples. Ophthalmology 11:1891–1898

111. Chowers I, Meir T, Lederman M et al (2008) Sequence variants in HTRA1 and LOC387715/ARMS2 and 

phenotype and response to photodynamic therapy in neovascular age-related macular degeneration in 

populations from Israel. Mol Vis 14:2263–2271

112. Zumbrunn J, Trueb B (1996) Primary structure of a putative serine protease specific for IGF-binding proteins. 

FEBS Lett 398:187–192

113. Mathura JR Jr, Jafari N, Chang JT et al (2000) Bone morphogenetic proteins-2 and -4: negative growth 

regulators in adult retinal pigmented epithelium. Invest Ophthalmol Vis Sci 41:592–600

114. Oka C, Tsujimoto R, Kajikawa M et al (2004) HtrA1 serine protease inhibits signaling mediated by TGFbeta 

family proteins. Development 131:1041–1053

115. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. 

Science 240:622–630

116. Evans DA, Beckett LA, Field TS et al (1997) Apolipoprotein E epsilon4 and incidence of Alzheimer disease in 

a community population of older persons. JAMA 277:822–824

117. Slooter AJ, Tang MX, van Duijn CM et al (1997) Apolipoprotein E epsilon4 and the risk of dementia with 

stroke. A population-based investigation. JAMA 277:818–821

118. Ishida BY, Bailey KR, Duncan KG et al (2004) Regulated expression of apolipoprotein E by human retinal 

pigment epithelial cells. J Lipid Res 45:263–271

119. Klaver CC, Kliffen M, van Duijn CM et al (1998) Genetic association of apolipoprotein E with age-related 

macular degeneration. Am J Hum Genet 63:200–206

120. Anderson DH, Ozaki S, Nealon M et al (2001) Local cellular sources of apolipoprotein E in the human retina 

and retinal pigmented epithelium: implications for the process of drusen formation. Am J Ophthalmol 

131:767–781

121. Anderson DH, Talaga KC, Rivest AJ et al. (2004) Characterization of beta amyloid assemblies in drusen: the 

deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256

122. Li CM, Clark ME, Chimento MF et al (2006) Apolipoprotein localization in isolated drusen and retinal 

apolipoprotein gene expression. Invest Ophthalmol Vis Sci 47:3119–3128

123. Wang L, Clark ME, Crossman DK et al (2010) Abundant lipid and protein components of drusen. PLoS 

One5:e10329

124. Zannis VI (1986) Genetic polymorphism in human apolipoprotein E. Methods Enzymol 128:823–851

125. Jarvik GP (1997) Genetic predictors of common disease: apolipoprotein E genotype as a paradigm. Ann 

Epidemiol 7:357–362

126. Souied EH, Benlian P, Amouyel P et al (1998) The epsilon4 allele of the apolipoprotein E gene as a potential 

protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125:353–359

127. Pang CP, Baum L, Chan WM et al (2000) The apolipoprotein E epsilon4 allele is unlikely to be a major risk 

factor of age-related macular degeneration in Chinese. Ophthalmologica 214:289–291

128. Schmidt S, Saunders AM, De La Paz MA et al (2000) Association of the apolipoprotein E gene with age-related 

macular degeneration: possible effect modification by family history, age, and gender. Mol Vis 6:287–293

129. Simonelli F, Margaglione M, Testa F et al (2001) Apolipoprotein E polymorphisms in age-related macular 



170 Chapter 5.1

degeneration in an Italian population. Ophthalmic Res 33:325–328

130. Schmidt S, Klaver C, Saunders A et al (2002) A pooled case-control study of the apolipoprotein E (APOE) gene 

in age-related maculopathy. Ophthalmic Genet 23:209–223

131. Schultz DW, Klein ML, Humpert A et al (2003) Lack of an association of apolipoprotein E gene polymorphisms 

with familial age-related macular degeneration. Arch Ophthalmol 121:679–683

132. Baird PN, Guida E, Chu DT et al (2004) The epsilon2 and epsilon4 alleles of the apolipoprotein gene are 

associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:1311–1315

133. Gotoh N, Kuroiwa S, Kikuchi T et al (2004) Apolipoprotein E polymorphisms in Japanese patients with 

polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Am J Ophthalmol 

138:567–573

134. Zareparsi S, Reddick AC, Branham KE et al (2004) Association of apolipoprotein E alleles with susceptibility to 

age-related macular degeneration in a large cohort from a single center. Invest Ophthalmol Vis Sci 45:1306–

1310

135. Baird PN, Richardson AJ, Robman LD et al (2006) Apolipoprotein (APOE) gene is associated with progression 

of age-related macular degeneration (AMD). Hum Mutat 27:337–342

136. Bojanowski CM, Shen D, Chew EY et al (2006) An apolipoprotein E variant may protect against age-related 

macular degeneration through cytokine regulation. Environ Mol Mutagen 47:594–602

137. Wong TY, Shankar A, Klein R et al (2006) Apolipoprotein E gene and early age-related maculopathy: the 

Atherosclerosis Risk in Communities Study. Ophthalmology 113: 255–259

138. Utheim OA, Ritland JS, Utheim TP et al (2008) Apolipoprotein E genotype and risk for development of 

cataract and age-related macular degeneration. Acta Ophthalmol 86:401–403

139. Tikellis G, Sun C, Gorin MB et al (2007) Apolipoprotein E gene and age-related maculopathy in older 

individuals: the cardiovascular health study. Arch Ophthalmol 125:68–73

140. Manttari M, Manninen V, Palosuo T et al (2001) Apolipoprotein E polymorphism and C-reactive protein in 

dyslipidemic middle-aged men. Atherosclerosis 156:237–238

141. Austin MA, Zhang C, Humphries SE et al (2004) Heritability of C-reactive protein and association with 

apolipoprotein E genotypes in Japanese Americans. Ann Hum Genet 68:179–188

142. Judson R, Brain C, Dain B et al (2004) New and confirmatory evidence of an association between APOE 

genotype and baseline C-reactive protein in dyslipidemic individuals. Atherosclerosis 177:345–351

143. Marz W, Scharnagl H, Hoffmann MM et al (2004) The apolipoprotein E polymorphism is associated with 

circulating C-reactive protein (the Ludwigshafen risk and cardiovascular health study). Eur Heart J 25:2109–

2119

144. Eiriksdottir G, Aspelund T, Bjarnadottir K et al (2006) Apolipoprotein E genotype and statins affect CRP levels 

through independent and different mechanisms: AGES Reykjavik Study. Atherosclerosis 186:222–224

145. Rontu R, Ojala P, Hervonen A et al (2006) Apolipoprotein E genotype is related to plasma levels of C-reactive 

protein and lipids and to longevity in nonagenarians. Clin Endocrinol (Oxf ) 64:265–270

146. Lee SJ, Kim JH, Chung MJ et al (2007) Human apolipoprotein E2 transgenic mice show lipid accumulation 

in retinal pigment epithelium and altered expression of VEGF and bFGF in the eyes. J Microbiol Biotechnol 

17:1024–1030

147. Malek G, Johnson LV, Mace BE et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-

related retinal degeneration. Proc Natl Acad Sci USA 102:11900–11905

148. Katsuya T, Baba S, Ishikawa K et al (2002) Epsilon 4 allele of apolipoprotein E gene associates with lower 

blood pressure in young Japanese subjects: the Suita Study. J Hypertens 20:2017–2021

149. Grindle CF, Marshall J (1978) Ageing changes in Bruch’s membrane and their functional implications. Trans 

Ophthalmol Soc U K 98:172–175

150. Ignatius MJ, Gebicke-Harter PJ, Skene JH et al (1986) Expression of apolipoprotein E during nerve 

degeneration and regeneration. Proc Natl Acad Sci USA 83:1125–1129

151. Poirier J, Baccichet A, Dea D et al (1993) Cholesterol synthesis and lipoprotein reuptake during synaptic 

remodelling in hippocampus in adult rats. Neuroscience 55:81–90

152. Neale BM, Fagerness J, Reynolds R et al (2010) Genome-wide association study of advanced age-related 

macular degeneration identifies a role of the hepatic lipase gene (LIPC). PNAS 107: 7395-7400

153. Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk 

of coronary artery disease. Nat Genet 40:161–169

154. Kathiresan S, Willer CJ, Peloso GM et al (2009) Common variants at 30 loci contribute to polygenic 

dyslipidemia. Nat Genet 41:56–65

155. Hasham SN, Pillarisetti S (2006) Vascular lipases, inflammation and atherosclerosis. Clin Chim Acta 372:179–

183



171Genetics of AMD

5

156. Tserentsoodol N, Gordiyenko NV, Pascual I et al (2006) Intraretinal lipid transport is dependent on high 

density lipoprotein-like particles and class B scavenger receptors. Mol Vis 12:1319–1333

157. Wang W, Connor SL, Johnson EJ et al (2007) Effect of dietary lutein and zeaxanthin on plasma carotenoids 

and their transport in lipoproteins in age-related macular degeneration. Am J Clin Nutr 85:762–769

158. Yu Y, Bhangale TR, Fagerness J et al (2011) Common variants near FRK/COL10A1 and VEGFA are associated 

with advanced age-related macular degeneration. Hum mol gen 20: 3699-3709

159 Fauser S, Smailhodzic D, Caramoy A et al (2011) Evaluation of serum lipid concentrations and genetic 

variants at high-density lipoprotein metabolism loci and TIMP3 in age-related macular degeneration. Invest 

Ophthalmol Vis Sci 52:5525-5528

160. Yu Y, Reynolds R, Fagerness J et al (2011) Association of variants in the LIPC and ABCA1 genes with 

intermediate and large drusen and advanced age-related macular degeneration. Inves Ophthalmol Vis Sci 

52:4463-4670

161. Curcio CA, Presley JB, Malek G et al (2005) Esterified and unesterified cholesterol in drusen and basal deposits 

of eyes with age-related maculopathy. Exp Eye Res 81:731–741

162. Tamura Y, Konomi H, Sawada H et al (1991) Tissue distribution of type VIII collagen in human adult and fetal 

eyes. Invest Ophthalmol Vis Sci 32:2636-2644

163. De La Paz MA, Pericak-Vance MA, Lennon F et al (1997) Exclusion of TIMP3 as a candidate locus in age-related 

macular degeneration. Invest Ophthalmol Vis Sci 38:1060–1065

164. Felbor U, Doepner D, Schneider U et al (1997) Evaluation of the gene encoding the tissue inhibitor of 

metalloproteinases-3 in various maculopathies. Invest Ophthalmol Vis Sci 38:1054–1059

165. Abecasis GR, Yashar BM, Zhao Y et al (2004) Age-related macular degeneration: a high-resolution genome 

scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74:482–494

166. Strunnikova NV, Maminishkis A, Barb JJ et al (2010) Transcriptome analysis and molecular signature of 

human retinal pigment epithelium. Hum Mol Genet 19:2468–2486

167. Weber BH, Vogt G, Pruett RC et al (1994) Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in 

patients with Sorsby’s fundus dystrophy. Nat Genet 8:352–356

168. Haines JL, Schnetz-Boutaud N, Schmidt S et al (2006) Functional candidate genes in age-related macular 

degeneration: significant association with VEGF, VLDLR, and LRP6. Invest Ophthalmol Vis Sci 47:329-335

169. Arakawa S, Takahashi A, Ashikawa K et al (2011) Genome-wide association study identifies two susceptibility 

loci for excudative age-related macular degeneration in the Japanese population. Nat gen 43: 1001-1004

170. Schaumberg DA, Hankinson SE, Guo Q et al (2007) A prospective study of 2 major age-related macular 

degeneration susceptibility alleles and interactions with modifiable risk factors. Arch Ophthalmol 125:55–62

171. Scott WK, Schmidt S, Hauser MA et al (2007) Independent effects of complement factor H Y402H 

polymorphism and cigarette smoking on risk of age-related macular degeneration. Ophthalmology 

114:1151–1156

172. Delcourt C, Delyfer MN, Rougier MB et al (2011) Associations of complement factor h and smoking with early 

age-related macular degeneration: the ALIENOR study. Invest Ophthalmol Vis Sci 52:5955-5962

173. Klein ML, Francis PJ, Rosner B et al (2008) CFH and LOC387715/ARMS2 genotypes and treatment with 

antioxidants and zinc for age-related macular degeneration. Ophthalmology 115:1019–1025

174. Wang JJ, Rochtchina E, Smith W et al (2009) Combined effects of complement factor H genotypes, fish 

consumption, and inflammatory markers on long-term risk for age-related macular degeneration in a 

cohort. Am J Epidemiol 169:633–641

175. Ho L, van Leeuwen R, Witteman JCM et al (2011) Reducing the genetic risk of age-related macular 

degeneration with dietary antioxidants, zinc, and ω-3 fatty acids. Arch Ophthalmol 129:758-766

176. Francis PJ, George S, Schultz DW et al (2007) The LOC387715 gene, smoking, body mass index, environmental 

associations with advanced age-related macular degeneration. Hum Hered 63:212–218

177. Ross RJ, Bojanowski CM, Wang JJ et al (2007) The LOC387715 polymorphism and age-related macular 

degeneration: replication in three case-control samples. Invest Ophthalmol Vis Sci 48:1128–1132

178. Seitsonen SP, Onkamo P, Peng G et al (2008) Multifactor effects and evidence of potential interaction 

between complement factor H Y402H and LOC387715 A69S in age-related macular degeneration. PLoS One 

3:e3833

179. Wang JJ, Ross RJ, Tuo J et al (2008) The LOC387715 polymorphism, inflammatory markers, smoking, and age-

related macular degeneration. A population-based case control study. Ophthalmology 115:693–699

180. Lee SJ, Kim NR, Chin HS (2010) LOC387715/HTRA1 polymorphisms, smoking, and combined effects on 

exudative age-related macular degeneration in a Korean population. Clin Experiment Ophthalmol 38:698–

704

181. Schmidt S, Hauser MA, Scott WK et al (2006)Cigarette smoking strongly modifies the association of 



172 Chapter 5.1

LOC387715 and age-related macular degeneration. Am J Hum Genet 78(5):852-864

182. Neuner B, Wellmann J, Dasch B et al (2008) LOC387715, smoking and their prognostic impact on visual 

functional status in age-related macular degeneration – The Muenster Aging and Retina Study (MARS) 

cohort. Ophthalmic Epidemiol 15:148–154

183. Cameron DJ, Yang Z, Gibbs D et al (2007) HTRA1 variant confers similar risks to geographic atrophy and 

neovascular age-related macular degeneration. Cell Cycle 6:1122–1125

184. Yoshida T, DeWan A, Zhang H et al (2007) HTRA1 promoter polymorphism predisposes Japanese to age-

related macular degeneration. Mol Vis 13:545–548

185. Kaur I, Katta S, Hussain A et al (2008) Variants in the 10q26 gene cluster (LOC387715 and HTRA1) exhibit 

enhanced risk of age-related macular degeneration along with CFH in Indian patients. Invest Ophthalmol 

Vis Sci 49:1771–1776

186. Fritsche LG, Freitag-Wolf S, Bettecken T et al (2009) Age-related ,acular degeneration and functional 

promoter and coding variants of the apolipoprotein E gene. Hum Mutat 30(7):1048-1053

187. Schmidt S, Haines JL, Postel EA et al (2005) Joint effects of smoking history and APOE genotypes in age-

related macular degeneration. Mol Vis 11:941–949 Am J Hum Genet 78:852–864

188.  Francis PJ, Zhang H, Dewan A et al (2008) Joint effects of polymorphisms in the HTRA1, LOC387715/ARMS2, 

and CFH genes on AMD in a Caucasian population. Mol Vis 14:1395–1400







Chapter 5.2

Seven New Loci Associated with 

Age-Related Macular Degeneration

The AMD Gene Consortium

Lars G Fritsche*, Wei Chen*, Matthew Schu*, Brian L Yaspan*, Yi Yu*, Gudmar Thorleifsson, Donald J Zack, Satoshi 

Arakawa, Valentina Cipriani, Stephan Ripke, Robert P Igo, Jr., Gabriëlle H S Buitendijk, Xueling Sim, Daniel E 

Weeks, Robyn H Guymer, Joanna E Merriam, Peter J Francis, Gregory Hannum, Anita Agarwal, Ana Maria 

Armbrecht, Isabelle Audo, Tin Aung, Gaetano R Barile, Mustapha Benchaboune, Alan C Bird, Paul N Bishop, Kari E 

Branham, Matthew Brooks, Alexander J Brucker, William H Cade, Melinda S Cain, Peter A Campochiaro, Chi-Chao 

Chan, Ching-Yu Cheng, Emily Y Chew, Kimberly A Chin, Itay Chowers, David G Clayton, Radu Cojocaru, Yvette P 

Conley, Belinda K Cornes, Mark J Daly, Baljean Dhillon, Albert O Edwards, Evangelos Evangelou, Jesen Fagerness, 

Henry A Ferreyra, James S Friedman, Asbjorg Geirsdottir, Ronnie J George, Christian Gieger, Neel Gupta, Stephanie 

A Hagstrom, Simon P Harding, Christos Haritoglou, John R Heckenlively, Frank G Holz, Guy Hughes, John P A 

Ioannidis, Tatsuro Ishibashi, Peronne Joseph, Gyungah Jun, Yoichiro Kamatani, Nicholas Katsanis, Claudia N 

Keilhauer, Jane C Khan, Ivana K Kim, Yutaka Kiyohara, Barbara E K Klein, Ronald Klein, Jaclyn L Kovach, Igor Kozak, 

Clara J Lee, Kristine E Lee, Peter Lichtner, Andrew J Lotery, Thomas Meitinger, Paul Mitchell, Saddek Mohand-

Saïd, Anthony T Moore, Denise J Morgan, Margaux A Morrison, Chelsea E Myers, Adam C Naj, Yusuke Nakamura, 

Yukinori Okada, Anton Orlin, M Carolina Ortube, Mohammad I Othman, Chris Pappas, Kyu Hyung Park, Gayle J 

T Pauer, Neal S Peachey, Olivier Poch, Rinki Ratna Priya, Robyn Reynolds, Andrea J Richardson, Raymond Ripp, 

Guenther Rudolph, Euijung Ryu, José-Alain Sahel, Debra A Schaumberg, Hendrik P N Scholl, Stephen G Schwartz, 

William K Scott, Humma Shahid, Haraldur Sigurdsson, Giuliana Silvestri, Theru A Sivakumaran, R Theodore Smith, 

Lucia Sobrin, Eric H Souied, Dwight E Stambolian, Hreinn Stefansson, Gwen M Sturgill-Short, Atsushi Takahashi, 

Nirubol Tosakulwong, Barbara J Truitt, Evangelia E Tsironi, André G Uitterlinden, Cornelia M van Duijn, Lingam 

Vijaya, Johannes R Vingerling, Eranga N Vithana, Andrew R Webster, H.-Erich Wichmann, Thomas W Winkler, Tien 

Y Wong, Alan F Wright, Diana Zelenika, Li Zhang, Ling Zhao, Kang Zhang, Michael L Klein, Gregory S Hageman, 

G Mark Lathrop, Kari Stefansson, Rando Allikmets*, Paul N Baird*, Michael B Gorin*, Jie Jin Wang*, Caroline C W 

Klaver*, Johanna M Seddon*, Margaret A Pericak-Vance*, Sudha K Iyengar*, John R W Yates*, Anand Swaroop*, 

Bernhard H F Weber*, Michiaki Kubo*, Margaret M DeAngelis*, Thierry Léveillard*, Unnur Thorsteinsdottir*, 

Jonathan L Haines*, Lindsay A Farrer*, Iris M Heid*, Gonçalo R Abecasis*

* These authors contributed equally.

Published in Nat Genet. 2013 Apr;45(4):433-9, 439e1-2. doi: 10.1038/ng.2578. Epub 2013 Mar 3. PMID: 23455636 

Supplementary material is available at:

http://www.nature.com.eur.idm.oclc.org/ng/journal/v45/n4/full/ng.2578.html



176 Chapter 5.2

ABSTRACT

Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. 

To accelerate understanding of AMD biology and help design new therapies, we executed a 

collaborative genome-wide association study, examining >17,100 advanced AMD cases and >60,000 

controls of European and Asian ancestry. We identified 19 genomic loci associated with AMD with 

p<5x10-8 and enriched for genes involved in regulation of complement activity, lipid metabolism, 

extracellular matrix remodeling and angiogenesis. Our results include 7 loci reaching p<5x10-8 

for the first time, near the genes COL8A1/FILIP1L, IER3/DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9/

MIR548A2, and B3GALTL. A genetic risk score combining SNPs from all loci displayed similar good 

ability to distinguish cases and controls in all samples examined. Our findings provide new directions 

for biological, genetic and therapeutic studies of AMD.
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INTRODUCTION, RESULTS AND DISCUSSION

AMD is a progressive neurodegenerative disease that leads to loss of central vision through death of 

photoreceptors1,2. In developed countries, AMD is the leading cause of blindness in those >65 years3. 

Genes in the complement pathway4-11 and a region of chromosome 10 12,13 have now been implicated 

as the major genetic contributors to disease. Association has also been demonstrated with several 

additional loci14-20, each providing an entry-point into AMD biology and potential therapeutic targets.

To accelerate the pace of discovery in macular degeneration genetics, 18 research groups from 

across the world formed the AMD Gene Consortium in early 2010, with support from the National 

Eye Institute (Table 1, Supplementary Table 1, Supplementary Note). To extend the catalog of 

disease associated common variants, we first organized a meta-analysis of genomewide association 

scans (GWAS) – combining data for >7,600 cases with advanced disease (geographic atrophy, 

neovascularization, or both) and >50,000 controls. Each study was first subject to GWAS quality 

control filters (customized taking into account study specific features as detailed in Supplementary 

Table 2) and standardized to the HapMap reference panel and statistical genotype imputation22-25. 

Results were combined through meta-analysis26 and thirty-two variants representing loci with 

promising evidence of association were genotyped in an additional >9,500 cases and >8,200 controls 

(Supplementary Tables 1–3; summary meta-analysis results available online). Our overall analysis of 

the most promising variants thus included >17,100 cases and >60,000 controls.

TABLE 1 - Summary of the samples used in genome-wide discovery and targeted follow-up analyses

For additional details, including a breakdown of the number of cases and controls in individual samples, see 

Supplementary Table 1. N
cases

 includes only cases with geographic atrophy, choroidal neovascularization, or 

both.

Analysis

Contributing 

study groups N
cases

% Female % Neovascular disease N
controls

% Female

Genome-wide discovery 15 7,650 53.9 59.2 51,844 45.2

Targeted follow-up 18 9,531 56.3 57.8 8,230 53.8

Overall 33 17,181 55.2 58.4 60,074 46.3

Our meta-analysis evaluated evidence for association at 2,442,884 SNPs (Figure 1). Inspection of Q-Q 

plots (Supplementary Figure 1) and the genomic control value (ëGC=1.06) suggest that unmodeled 

population stratification does not significantly impact our findings (Supplementary Table 4 for 

details). Joint analysis of discovery and follow-up studies27 resulted in 19 loci reaching p<5x108 

(Figure 1, Table 2, Supplementary Table 5). These 19 loci include all susceptibility loci previously 

reaching p<5x10-8, except the 4q12 gene cluster for which association was reported in a Japanese 

population. In addition, the set includes seven loci reaching p<5x10-8 for the first time.
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FIGURE 1 - Summary of genomewide association scan results. Summary of genomewide association scan results 

in the discovery GWAS sample. Previously described loci reaching p < 5x10-8 are labeled in blue; new loci 

reaching p < 5x10-8 for the first time after follow-up are labeled in green.

We evaluated heterogeneity between studies using the I2 statistic, which compares variability in 

effect size estimates between studies to chance expectations28. We observed significant (p<.05/19) 

heterogeneity only for loci near ARMS2 (I2=75.7%, p<1x10-6) and near CFH (I2=85.4%, p<1x10-6). 

Although these two loci were significantly associated in every sample examined, the magnitude of 

association varied more than expected. To explore sources of heterogeneity, we carried out a series 

of sub-analyses: we repeated the genomewide meta-analysis adding an age-adjustment, separating 

neovascular (NV) and geographic atrophy (GA) cases, in men and women, and in European- and 

Asian-ancestry samples separately (Figure 2, Supplementary Figure 2). These sub-analyses of the full 

GWAS dataset did not uncover additional loci reaching p<5x10-8; furthermore heterogeneity near 

CFH and ARMS2 remained significant in all sub-analyses (I2>65%, p <0.001). Consistent with previous 

reports17,29,30, separate analysis of NV and GA cases showed ARMS2 risk alleles preferentially associated 

with risk of NV (OR
NV

=2.97, OR
GA

=2.50, p
difference

=.0008) whereas CFH risk alleles preferentially 

associated with risk of GA (OR
NV

=2.34, OR
GA

=2.80, p
difference

=.0006). We also observed large differences 

in effect sizes when stratifying by ethnicity, with variants near CFH exhibiting stronger evidence 

for association among Europeans (p=0.0000001) and those near TNFRSF10A among East Asians 

(p=0.002). Potential explanations include differences in linkage disequilibrium between populations 

or differences in environmental or diagnostic factors that modify genetic effects.

Identifying the full spectrum of allelic variation that contributes to disease in each locus will require 

sequencing of AMD cases and controls. To conduct an initial evaluation of the evidence for multiple 

AMD risk alleles in the nineteen loci described here, we repeated genome-wide association analyses 

conditioning on the risk alleles listed in Table 2. We then examined each of the 19 implicated loci 

for variants with independent association (at p<0.0002, corresponding for an estimate of ~250 

independent variants per locus). This analysis resulted in the identification of the previously well 

documented independently associated variants near CFH and C2/CFB8,10,31,32 and of additional 

independent signals near C3, CETP, LIPC, FRK/COL10A1, IER3/DDR1, RAD51B (Supplementary Table 
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6). In four of these loci, the independently associated variants mapped very close (within <60kb) 

to the original signal. This shows each locus can harbor multiple susceptibility alleles, encouraging 

searches for rare variants that elucidate gene function in these regions33,34.

FIGURE 2 - Sensitivity analysis. The top left panel compares estimated effect sizes for the original analysis and for 

an age-adjusted analysis (where age was included as a covariate and samples of unknown age were excluded). 

The top right panel compares analyses stratified by sex. The bottom left panel evaluates stratification by 

disease subtype. The bottom right panel evaluates stratification by ethnicity. The size of each marker reflects 

confidence intervals (with height reflecting confidence interval along the Y axis and width reflecting confidence 

interval along the X axis). Comparisons reaching p < 0.05 are labeled and colored in red.

To prioritize our search for likely causal variants, we examined each locus in detail (see LocusZoom35 

plots in Supplementary Figure 3) and investigated whether AMD risk alleles were associated with 

changes in protein sequence, copy number variation or insertion deletion polymorphisms. One 

quarter of associated variants altered protein sequence, either directly (N=2) or through linkage 

disequilibrium (r2>.6; N=3) with a nearby non-synonymous variant (Supplementary Table 7). Some 

coding variants point to well-studied genes (ARMS2, C3 and APOE) while others help prioritize nearby 

genes for further study. In chromosome 4q25, index SNP rs4698775 is in strong linkage disequilibrium 

(r2=.88) with a potentially protein damaging variant in CCDC109B36, a coiled coil domain containing 

protein that may be involved in the regulation of gene expression. In chromosome 6q22, index 

SNP rs3812111 is a perfect proxy for a coding variant in COL10A1, a collagen protein that could be 
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important in maintaining the structure and function of the extra-cellular matrix. Interestingly, Y402H 

was not in disequilibrium with rs10737680, the most strongly associated SNP in the CFH region but, 

instead, was tagged by a secondary and weaker association signal (Supplementary Tables 6&7). This 

is consistent with prior haplotype analyses of the locus10,31,32,34,37.

We used publicly available data38,39 to check whether any of our index SNPs might be proxies for copy 

number variants or insertion-deletion polymorphisms (indels), which are hard to directly interrogate 

with genotyping arrays. This analysis identified a single strong association (r2=.99), between 

rs10490924, a coding variant in the ARMS2 gene which is the peak of association in 10q26, and a 3’ 

UTR indel polymorphism associated with ARMS2 mRNA instability40. Because index SNP rs10490924 

is also in strong disequilibrium (r2=.90) with a nearby SNP, rs11200638, that regulates HTRA141, our 

data does not directly answer whether HTRA1 or ARMS2 is the causal gene in this locus. Although 

a common deletion of the CFHR1 and CFHR3 genes has been proposed42,43, there was only modest 

signal in this study which is likely due to linkage disequilibrium with our most significantly associated 

variants in the locus (r2=.31 between rs10737680 and 1000 Genomes Project MERGED_DEL_2_6731) 

as previously suggested34.

Using RNA-sequencing44, we examined mRNA levels of 85 genes within 100 kb of our index SNPs in 

post-mortem human retina (Supplementary Table 8). Of 19 independent risk loci, three had no genes 

with expressed transcripts in either old or young retina. Two genes showed differential expression 

between post-mortem retina of young (ages 17–35) and elderly (ages 75 and 77) individuals: CFH 

(p=0.009) and VEGFA (p=0.003), both with increased expression in older individuals. Using previously 

published data45, we also examined the expression of associated genes in fetal and adult retinal 

pigment epithelium (RPE). This revealed increased C3 expression in adult RPE compared to fetal RPE 

(p=0.0008). CFH, VEGFA and C3 are thus up-regulated with aging, and their role in AMD may indicate 

an accelerated aging process. In addition to C3 and CFH, all the complement genes with detectable 

expression in the retina or RPE experiments showed higher expression levels in older tissue.

To identify biological relationships among our genetic association signals, we catalogued the genes 

within 100kb of the variants in each association peak (r2>0.8 with the index SNP listed in Table 

1). Ingenuity Pathway Analysis (Ingenuity Systems, Redwood, CA) highlighted several biological 

pathways, particularly the complement system and atherosclerotic signaling, to be enriched in the 

resulting set of 90 genes (Table 3, Supplementary Table 9). To account for features of genome-wide 

association studies (such as the different number of SNPs in each gene), we carried out two additional 

analyses. First, we repeated our analysis for 50 sets of 19 control loci drawn from the National Human 

Genome Research Institute (NHGRI) GWAS catalog46. In these 50 control sets, Ingenuity enrichment 

p-values for the complement system and for atherosclerosis signaling genes were exceeded 16% 

and 32% of the time respectively (although these two specific pathways were never implicated in a 

control dataset). Second, we repeated our enrichment analyses using the Interval-based Enrichment 

Analysis Tool for Genome-Wide Association Studies (INRICH)47, which is specifically designed for 

the analysis of GWAS but accesses a more limited set of annotations. The INRICH analyses showed 

enrichment for genes encoding collagen and extra-cellular region proteins (both with p=1x10-

5 and after adjustment for multiple testing p
adjust

=0.0006), complement and coagulation cascades 

(p=0.0002, p
adjust

=0.03), lipoprotein metabolism (p=0.0003, p
adjust

=0.04), and regulation of apoptosis 

(p=0.0009, p
adjust

=0.09) (Supplementary Table 10).
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TABLE 3 - Pathway analysis

Ingenuity canonical pathways

Enrichment analysis

Nominal 

P value

FDR

q value Molecules

Pathway size

(N
genes

)

Complement system 0.000012 0.0015 CFI, CFH, C3, CFBa,C2a, C4Aa, C4Ba 35

Atherosclerosis signaling 0.00014 0.009 PLA2G12A, APOC1b, APOEb, APOC2b, 

APOC4b , TNFS14,COL10A1, PLA2G6

129

VEGF family ligand-receptor interactions 0.0042 0.150 VEGFA, PLA2G12A, PLA2G6 84

Dendritic cell maturation 0.0046 0.150 RELB, ZBTB12, DDR1, COL10A1 185

Phospholipid degradation 0.0058 0.151 PLA2G12A, LIPC, PLA2G6 102

MIF-mediated glucocorticoid regulation 0.0088 0.153 PLA2G12A, PLA2G6 42

Inhibition of angiogenesis by TSP1 0.0093 0.153 VEGFA, TGFBR1 39

FcεRl signaling 0.0098 0.153 VAV1, PLA2G12A, PLA2G6 111

p38 MAPK signaling 0.011 0.153 PL2G12A, TGFBR1, PLA2G6 106

Abbreviations: FDR = false discovery rate.
aAll flank rs429608 and are thus counted as a single hit when determining the significance of enrichment.
bAll flank rs4420638 and are thus counted as a single hit when determining the significance of enrichment.

To explore the connections between our genetic association signals, we tested for interaction 

between pairs of risk alleles – looking for situations where joint risk was different than expected 

based on marginal effects. This analysis resulted in 171 tests of interaction, of which 9 were nominally 

significant (p<0.05, see Supplementary Table 11), consistent with chance expectations. The strongest 

observed interaction involved risk alleles at rs10737680 (near CFH) and rs429608 (near C2/CFB), 

the only association that remained significant after adjusting for multiple testing (p=0.000052, 

<0.05/171=0.00029). Individuals carrying risk alleles at both these loci where at slightly higher risk 

of disease than expected.

The proportion of the variability in the risk of AMD that is due to genes, or heritability, has been 

estimated at 45–70% 2. Estimating the proportion of disease risk explained by the susceptibility loci 

identified48 depends greatly on the disease prevalence, which is difficult to estimate in our sample, 

as it includes cases and controls of different ages and collected through a variety of ascertainment 

schemes. Using a model that assumes an underlying normally distributed but unobserved disease 

risk score or liability49, the nineteen loci described here account for between 10% (if AMD prevalence 

is close to 1%) and 30% (if AMD prevalence is closer to 10%) of the variability in disease risk 

(corresponding to 15–65% of the total genetic contribution to AMD). The variants representing the 

peak of association at loci previously reaching genome-wide significance account for the bulk of this 

variability: the new loci identified here account for 0.5–1.0% of the total heritability of AMD whereas 

secondary signals at novel and known loci account for 1.5–3.0% of the total heritability.

We report here the most comprehensive genetic association study of macular degeneration yet 

conducted, involving 18 international research groups, and a large set of cases and controls. Our data 

reveal 19 susceptibility loci, including 7 loci reaching p<5x10-8 for the first time, nearly doubling the 

number of known AMD loci outside the complement pathway. Our results show some susceptibility 

alleles exhibit different association across ethnic groups and may be preferentially associated with 

specific subtypes of disease. As with other GWAS meta-analysis, differences in genotyping methods, 

quality control steps and imputation strategies between samples might have a minor effect in our 
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results – future studies may document that more uniform approaches across larger sample sizes 

might uncover more signals. A conundrum of macular degeneration genetics remains that the loci 

identified to date contribute to both GA and NV, two different phenotypes of advanced disease. 

In our sample, subtype specific GWAS analyses considering GA or NV cases only did not identify 

additional loci. Consistent with observations for other complex diseases39, the majority of common 

disease susceptibility alleles do not alter protein sequences and are not associated with insertions or 

deletions of coding sequence or with copy number variation. We expect that the loci identified here 

will provide an ideal starting point for studies of rare variation33,34.

In contrast to most other complex diseases, a risk score combining information across our 19 loci, 

can distinguish cases and controls relatively well (Figure 3, area under the ROC curve [AUC]=0.52 

including only new loci or AUC=0.74 including new and previously reported loci; Supplementary 

Figure 4). It may be possible to use similar scores to identify and prioritize at risk individuals so 

they receive preventative treatment prior to the onset of disease50. Monotherapies are increasingly 

utilized to manage neovascular disease, but offer only a limited repertoire of treatment options to 

patients. Identification of novel genes and pathways enables us to pursue a larger range of disease-

specific targets for development of new therapeutic interventions. We expect that future therapies 

directed at earlier stages of the disease process will allow patients to retain visual function for longer 

periods, improving the quality of life for individuals with AMD.

FIGURE 3 - Risk score analysis. We calculated a risk score for each individual, defined as the product of the number 

of risk alleles at each locus and the associated effect size for each allele (measured on the log-odds scale). The 

plot summarizes the ability of these overall genetic risk scores to distinguish cases and controls. Analyses were 

carried out using 19 SNPs that reached P< 5x10-8 here, the 12 SNPs previously reaching this threshold and the 

7 new variants.
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METHODS

Genome-wide scan for late AMD association including follow-up

Study-specific association analysis for discovery: Genotyping was performed on a variety of different 

platforms summarized in Supplementary Table 2. Each group submitted results from association 

tests using genotyped and imputed data where the allelic dosages were computed with either 

MACH25, IMPUTE23, BEAGLE24, or snpStats52 using the HapMap2 reference panels. The CEU panel was 

used as a reference for imputation-based analyses for most samples (predominantly of European 

ancestry), with two exceptions: for the JAREDS samples (predominantly of East Asian ancestry), the 

CHB+JPT panel was used as a reference; for the VRF samples (predominantly of South Asian ancestry) 

the combined CEU and CHB+JPT panels were used22,53. For most data sets association tests were run 

under a logistic regression model using either Plink54, Mach2dat25, ProbABEL55, or snpStats52, though 

for one dataset containing related individuals the generalized estimating equations algorithm56 as 

implemented in R57,58. In addition to the primary analysis which tested for SNP associations with 

advanced AMD unadjusted for age, an age-adjusted sensitivity analysis was conducted by each 

group with available age. Each group also provided stratified results by sex or AMD subtype (GA 

or NV) as long as the sample size per stratum exceeded 50 subjects. For all analyses, study-specific 

control for population stratification was conducted (Supplementary Table 4).

Study-specific association analysis for follow-up: Genotyping of the selected SNPs was performed on 

different platforms; the same models, sensitivity and stratified analyses were computed by each 

follow-up partner, while SNPs with insufficient call rate were excluded based on study-specific 

thresholds. If the index SNP could not be genotyped, a highly correlated proxy was used whenever 

possible (Supplementary Tables 2&3).

Quality control before meta-analysis: Before meta-analysis, all study-specific files underwent quality 

control procedures to check for completeness and plausible descriptive statistics on all variables as 

well as for compliance of allele frequencies with HapMap59. In addition, we excluded SNP results of 

a study into meta-analysis (i) for discovery: if imputation quality measures were too low (MACH & 

PLINK <0.3; SNPTEST <0.4) or if effect sizes (|beta|) or standard errors were too extreme (≥5) indicating 

instability of the estimates, (ii) for follow-up: if Hardy-Weinberg equilibrium was violated (p<0.05/32).

Meta-analyses: For both discovery and follow-up, we performed meta-analyses using the inverse 

variance weighted fixed effect model, which pools the effect size and standard error of each 

participated GWAS. Using an alternative weighted z-score method, which is based on a weighted 

sum of z-score statistics, we obtained a very similar set of test statistics (correlation of –log10(p-

value) >0.98). All analyses were performed using METAL26 and R. For the discovery, we applied two 

rounds of genomic control corrections to each individual GWAS and the combined meta results, 

respectively51. All results were analyzed and validated among four independent teams.

Extended analyses for the identified AMD loci: Extended analyses were conducted on the identified loci 

and particularly on the top SNP of each locus.

Second signal analysis: To detect potential independent signals within the identified AMD loci, each 

study partner with genotypes for all identified SNPs available re-analyzed their data for all SNPs 

in the respective loci (index SNP ±1Mb) using a logistic regression model containing all identified 

index SNPs. Quality control procedures were performed as before. The beta estimates for each SNP 

were meta-analyzed applying the effective sample size weighted z-score method and two rounds 

of genomic control correction. The significance threshold (p<0.05) for an independent association 
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signal within any of the identified loci was Bonferroni-adjusted using the average effective number 

of SNPs involved across the identified loci determined by SNPSpD60. To this analysis, 13 studies 

contributed including 7,489 cases and 51,562 controls.

Interaction analysis: Utilizing a pre-specified R-scripts (see supplementary material), GWAS partners 

performed 171 logistic regression analyses modeling the pair-wise interaction of the 19 index SNPs 

assuming an additive model for main and interaction effects. Study-specific covariates were included 

to the model if required. Per study, quality control included a check for consistency of SNP main 

effects between discovery and interaction analysis. SNPs with low imputation quality measures 

and pairs with |beta|>5 or standard errors >5 were excluded before meta-analyzing the interaction 

effects with the inverse variance weighted fixed effect model in METAL. To this analysis, 12 studies 

contributed including 6,645 cases and 49,410 controls.

Genetic risk score
The meta-analyzed effect sizes,, for each of the 19 SNPs were calculated in the meta-analysis 

described above and normalized by:

˘ /j j k
k 1

19
ˆ

where j=1,…,19. Using these values as weights, each study partner with data available for all 19 SNPs 

computed the genetic risk score for an individual as a normalized weighted sum of the AMD risk 

increasing alleles among the identified SNPs, with

S xi j ij
j

˘̂

where x
ij
 is the phenotype of the ith individual at the jth SNP, so ranges from 0 to 2. Data for these 

calculations were available from 12 studies including 7,195 cases and 49,149 controls.

For each study, we used a leave-one-out cross-validation to access the prediction of the risk score. 

For the kth subject, we fitted a logistic regression model from all subjects in the study excluding the 

kth subjects as:
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y
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where α is the intercept and y is the effect of the genetic risk score. The fitted probability of the kth 

subject was then estimated.

˘ / ( ˘ )y ek
Sk1 1ˆ ˆ

We sorted the fitted probabilities and calculated sensitivity and specificity by varying the risk 

threshold (the value compared with the fitted probability to dichotomize the subject into case or 

control) from 0 to 1. These were utilized to compute the area-under-the curve (AUC) of the receiver-

operating-curve (ROC).
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Identification of correlated coding variants and tagged non-SNP variation

LD estimates were calculated using genotype data of the identified risk loci (index SNPs ±500kb) 

of individuals with European ancestry from the 1000 Genomes Project (March 2012 release)61 or 

from HapMap (release #28)59. Variants correlated (r²>0.6) with one of the GWAS index SNPs were 

identified using PLINK54. To filter coding variants, all correlated variants were mapped against RefSeq 

transcripts using ANNOVAR62.

Gene expression

We evaluated expression of genes within 100kb of one of the 19 index SNPs, as well as of several 

retina-specific, RPE-specific and housekeeping genes unrelated to AMD for comparison in retina 

(RNA-sequencing data from three young [17–35 yrs age] and two old individuals [75 and 77 yrs age]) 

as well as in fetal and adult retinal pigment epithelium (RPE; published data in the Gene Expression 

Omnibus database45; GSE18811). Expression was analyzed using previously described protocols44 

(Supplementary Table 8).

Pathway analysis

Functional enrichment analysis was performed using the Ingenuity Pathway Analysis software (IPA, 

Ingenuity® Systems). Any gene located within 100kb of a SNP in high LD (r2>0.8) with one of the 

index SNPs was considered a potential AMD risk associated gene and considered for subsequent 

pathway enrichment analysis. LD estimates were calculated as described above. Applying the above 

inclusion filters, 90 genes appear to be implicated by our 19 replicated AMD SNPs (Supplementary 

Table 8). Because genes with related function sometimes cluster in the same locus, we trimmed 

gene lists during analysis so that only one gene per locus was used to evaluate enrichment for each 

pathway. The P-value of the association between our implicated gene list and any of the canonical 

pathways and/or functional gene sets as annotated by IPA’s Knowledge Base was computed using a 

one-sided Fisher’s exact test. The Benjamini-Hochberg method was used to estimate False Discovery 

Rates. To evaluate significance of observed enrichment, we repeated our Ingenuity analysis starting 

with 50 lists of 19 SNPs randomly drawn from the NHGRI GWAS catalog46 and, again, using the 

INRICH tool63. When using INRICH, we used gene sets defined in the Broad’s Molecular Signatures 

database47 (ver3.0) representing manually curated canonical pathway, Gene Ontology biological 

process, cellular component and molecular function gene sets (C2:CP, C5:BP, C5:CC and C5:MF). 

We provided INRICH with our full GWAS SNP list and allowed it to carry out 100,000 permutations, 

matching selected loci in terms of gene count, SNP density and total number of SNPs.
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ABSTRACT

Objective To examine effect modification between genetic susceptibility to age-related macular 

degeneration (AMD) and dietary antioxidant or fish consumption on AMD risk.

Design Pooled data analysis of population-based cohorts

Participants Participants from the Blue Mountains Eye Study (BMES) and Rotterdam Study (RS).

Methods Dietary intakes of antioxidants (lutein/zeaxanthin (LZ), β-carotene and vitamin C), 

long-chain omega-3 polyunsaturated fatty acids and zinc were estimated from food frequency 

questionnaires. AMD genetic risk was classified according to number of risk alleles of CFH (rs1061170) 

and/or ARMS2 (rs10490924) as low (none or 1 risk allele) or high (≥2 risk alleles). Interactions 

between dietary intake and genetic risk levels were assessed. Associations between dietary intake 

and AMD risk were assessed comparing the highest versus the two lower intake tertiles by genetic 

risk subgroups using discrete logistic regression, conducted in each study separately, and next in 

pooled data. Participants without AMD lesions at any visit were controls. We adjusted for age and 

sex in analyses of each cohort sample, and additionally adjusted for smoking status and study site in 

pooled-data analyses.

Main Outcome Measures All 15-year incident late AMD cases were confirmed by chief investigators 

of the Beaver Dam Eye Study, BMES and RS. Inter-grader reproducibility was assessed in an early AMD 

subsample, with 86.4% agreement between BMES and RS graders, allowing for a 1-step difference on 

a 5-step AMD severity scale.

Results In pooled data analyses we found significant interaction between AMD genetic risk status 

and LZ intake (p=0.0009) but non-significant interactions between genetic risk status and weekly fish 

consumption (p=0.05) for risk of any AMD. Among participants with high genetic risk, the highest 

intake tertile of LZ was associated with >20% reduced risk of early AMD, and weekly consumption of 

fish was associated with a 40% reduced risk of late AMD. No similar association was evident among 

participants with low genetic risk. No interaction was detected between β-carotene or vitamin C and 

genetic risk status.

Conclusions Protection against AMD from greater LZ and fish consumption in persons with high 

genetic risk based on two major AMD genes raises the possibility of personalized preventive 

interventions.
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INTRODUCTION

Genetic predisposition for susceptibility to age-related macular degeneration (AMD) has been 

confirmed1 with estimated heritability ranging from 46% to 71% and environmental exposures 

explaining some proportion of risk variance.2

The Age-Related Eye Disease Study (AREDS), a randomized controlled trial (RCT), documented that 

high dose zinc and antioxidant vitamin supplementation slowed AMD progression in advanced 

early AMD cases.3 Another RCT conducted in persons with geographic atrophy demonstrated 

that a lutein supplement over 12 months improved visual function.4 Although evidence about the 

protective association between dietary intake or serum levels of these carotenoids and AMD has 

been inconsistent, findings from a systematic review and meta-analysis support an association of 

dietary lutein/zeaxanthin (LZ) intake and reduced risk of late AMD.5 

Previously, Blue Mountains Eye Study (BMES) and Rotterdam Study (RS) investigators independently 

documented that high dietary intake of LZ was associated with a reduced long-term risk of AMD.6;7 

In addition, in the BMES cohort weekly consumption of fish was associated with reduced risk 

of late AMD only in participants with the CFH risk (CC) genotype.8 In the RS cohort high dietary 

intake of antioxidants reduced the risk of early AMD in persons with high genetic risk for AMD.9 

The apparent protective effect observed in persons with genetic susceptibility to AMD8;9 suggests 

an effect modification between known AMD genetic variants and dietary long-chain omega-3 

polyunsaturated fatty acids (ω-3 PUFAs) or antioxidants.

Joint contributions and interactions between AMD-related genetic variants and other AMD risk 

factors (eg. smoking,10;11 inflammatory markers12;13) have been documented previously, including an 

effect modification of dietary docosahexaenoic fatty acids (DHA, a component of ω-3 PUFAs) on risk 

of geographic atrophy in persons with the risk genotype of the ARMS2 gene.14 The interplay between 

nature and nurture may provide a better understanding of why some, but not all, persons with 

AMD-related genetic risk variants develop this condition. Using pooled longitudinal data from two 

population-based cohorts, we aimed to assess the consistency of the suggested effect modification 

between AMD genetic susceptibility and dietary intake of antioxidants or fish in relation to the 

incidence of early, late and any (early and late) AMD.

METHODS

The BMES and RS are population-based cohort studies with follow-up periods of 15 years. Participants 

were predominantly white.

Blue Mountains Eye Study (BMES)

In 1992-4, 3654 residents (82.4% of those eligible) aged 49+ years, living in two postcode areas 

west of Sydney, Australia, participated in baseline examinations; 2335, 1952 and 1140 were re-

examined after 5 (1997-9), 10 (2002-4) and 15 years (2007-10), respectively. There were 2452 baseline 

participants followed-up at least once. Each study visit was approved by the University of Sydney 

and the Sydney West Area Health Service Human Research Ethics Committees, and written, informed 

consent was obtained.
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After pharmacological mydriasis, 30º stereoscopic color transparencies of the macula and optic disc, 

and non-stereoscopic color transparencies of another four subfields were taken, using a Zeiss FF3 

fundus camera (Carl Zeiss, Oberkochen, Germany) for baseline, 5- and 10-year follow-up visits, and a 

40° digital camera (Canon CF-60 DSi with a Canon EoS 1DS Mark II camera body, Canon Inc., Tokyo, 

Japan) for the 15-year follow-up examination.

Rotterdam Study (RS)

At baseline (1990-93), 7983 (77.7% participation rate) eligible persons aged 55+ years were 

interviewed and examined. Ophthalmological examinations and retinal photography were 

performed on 6419 participants. Of these, 4977, 3637, 2674 and 1452 were re-examined at the 

second (1993-95), third (1997-99), fourth (2002-04) and fifth (2009-11) visits, respectively. Overall, 

3579 participants had genetic and baseline dietary data together with follow-up information, were 

free of late AMD at baseline, and were included. In order to correspond with the BMES follow-up visit 

intervals (each 5 years), participants of the second follow-up visit (1993-95) were excluded, except 

for incident late AMD cases that were included as incident AMD cases at the third visit (1997-99). 

Each visit was approved by the Erasmus Medical Center Ethics Committee and complied with the 

Declaration of Helsinki. All participants gave written informed consent prior to participation.

After pharmacological mydriasis, 35° stereoscopic color transparencies of the macula (Topcon TRV-

50VT fundus camera, Topcon Optical Co, Tokyo, Japan) were taken in each of the first three visits, and 

35° digital images (Topcon TRC 50EX fundus camera with the Sony DXC- 950P digital camera, Topcon 

Optical Co, Tokyo, Japan) were taken in the fourth and fifth visits.

Age-related Macular Degeneration Phenotype Definitions and Harmonization 

In both studies, retinal photographs of both eyes were graded by trained graders of each study 

initially,15;16 following the Wisconsin Age-related Maculopathy Grading System. Phenotype 

harmonization was performed within the Three Continent AMD Consortium.17 In brief, all late AMD 

incident cases detected from each study were initially adjudicated and confirmed by the retinal 

specialists of the corresponding study team, and then were confirmed by chief investigators of the 

BMES, RS and Beaver Dam Eye Study (BDES). A five-step severity scale (levels 10-50) was developed 

(Table 1, available at http://aao.journal.org). A subsample of 60 eyes covering various severity levels of 

early AMD was selected from the BDES and sent to BMES and RS teams to be graded independently. 

Exact agreement on the 5-step severity scale was 61.0% between BMES and RS graders; allowing a 

1-step difference increased agreement to 86.4%.

Assessment of Dietary Intake

In the BMES, a validated18 145-item, semi-quantitative food frequency questionnaire (FFQ), modified 

from an early FFQ by Willett et al19, was used. The FFQ was completed and returned by 3267 baseline 

participants (89.4%), of which 2900 (88.8%) were considered usable.18

The electronic version of the Australian Tables of Food Composition 199020 was used to calculate the 

intake of most nutrients. . The intake of ω-3 PUFA was calculated by adding dietary consumption 

of eicosapentaenoic (20:5, n-3) and docosahexaenoic (22:6, n-3) fatty acids. Information on fish 

consumption was obtained from the FFQ and regular fish consumption was defined as ≥1 serving 

per week, compared to <1 serving per week.
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In the RS, baseline dietary information was collected in 2 stages. First, participants completed 

a checklist at home. Second, a face-to-face interview was conducted by a trained dietitian at the 

research center, using a 170-item validated semi-quantitative FFQ.21 Using the computerized Dutch 

Food Composition Table, these dietary data, including intakes of vitamins and zinc, were converted 

to total energy and nutrient intakes per day.21 Intake of specific fatty acids was based on a food 

composition database derived from the TRANSFAIR Study.22 Beta-carotene and LZ were updated 

using an additional database of the Netherlands Institute of Public Health and Environmental 

Protection (personal communication, YCJ Vollebregt and EJM Feskens, unpublished observations, 

1993).23

Genotyping BMES

In the BMES, genotyping was performed using the Illumina Human 670-Quadv1 custom genotyping 

array at the Wellcome Trust Centre for Human Genetics, Sanger Institute, Cambridge, as part of the 

Wellcome Trust Case Control Consortium 2. After quality checking,24 genotypes of 2534 participants 

(544,802 single-nucleotide polymorphisms (SNPs)) were used for imputation. Genotypes were 

imputed from the 1000 Genomes (Version 1) reference using IMPUTE software (https://mathgen.

stats.ox.ac.uk/impute/impute.html, accessed June 4, 2013).

In addition, genotype data were obtained previously for rs1061170 in CFH, and rs10490924 in ARMS2 

for participants who attended the 5-year follow-up visit.8 We therefore used the genotyped SNPs of 

these two whenever available. The concordance rate between typed and imputed genotypes was 

99.61% for rs1061170 and 99.26% for rs10490924 based on participants who had both typed and 

imputed data of these two SNPs. 

Genotyping RS

In the RS, genotyping was performed using TaqMan assays (Applied Biosystems, Foster City, California, 

USA). The two SNPs (rs1061170 in CFH and rs10490924 in ARMS2) were successfully genotyped 

in 6345 and 6411 participants, respectively, and 6260 had both SNPs typed.9 In addition, for 

participants without genotype data, imputed data of these two SNPs were obtained from a genome-

wide association scan dataset, genotyped using the Illumina Infinium II HumanHap5. Imputation 

was performed using Markov Chain Haplotyping package version 1.0.15 software (http://www.sph.

umich.edu/csg/abecasis/MACH/, Ann Arbor, Michigan, USA, accessed June 4, 2013) and HapMap 

CEU data (NCBI build 36, release 22, The International HapMap Project). There were 6478 participants 

with both SNPs either typed or imputed.

Statistical Analysis

Of the 2534 BMES participants with dietary and genotype data available, 680 participated in the 

BMES Extension Study (1999-2000) who had not been followed, leaving 1854 included in this report. 

Of the 3579 RS baseline participants with follow-up information, dietary and genotype data available, 

2778 were followed at the third, fourth and/or fifth visits and thus included. Characteristics between 

participants who were included and excluded were compared by each study (Table 2, available at 

http://aao.journal.org). Distributions of baseline AMD risk factors by incident AMD categories are 

shown in Table 3.
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We compared dietary intakes between Australian and Netherlandish people using national survey 

data of the two countries (Table 4, available at http://aao.journal.org). The most recent published 

food survey data available are from the 1995 Australian National Survey,25;26 and the Dutch National 

Food Consumption Survey 2007-2010.27 Main macronutrient intakes were also compared between 

BMES and RS baseline populations (Table 5, available at http://aao.journal.org).

We used energy-adjusted dietary intakes of antioxidants (LZ, β carotene, vitamin C), ω-3PUFA, 

zinc and fish consumption as dietary exposures, and incident early, late or any (early and late 

combined) AMD as outcome variables. Controls were participants who had no early or late AMD 

lesions at all visits (level 10 on the severity scale; Table 1, available at http://aao.journal.org). Given 

the substantial differences in estimates for population means of dietary antioxidant intake between 

the two studies, we used population-specific tertiles in analyses, and examined tertile distributions 

of dietary antioxidant intake by incident early, late and any AMD (Table 6). We initially examined the 

associations of these dietary intakes with risk of AMD across three tertiles, and detected a threshold 

between the highest and the two lower intake tertiles. We therefore decided to compare the highest 

vs the two lower tertiles in all models, referenced to controls.

To assess if there were effect modifications between the selected dietary intakes and genetic 

susceptibility to AMD, using the two variants of major AMD-related genes (CFH, rs1061170 and ARMS 

2, rs10490924) we grouped participants’ genetic risk of AMD into three levels: 1) having no risk alleles 

of either CFH (rs1061170) or ARMS2 (rs10490924); 2) having 1 risk allele from either of the two genes; 

and 3) having ≥2 risk alleles from either or both of these genes. We tested for statistical interactions 

between genetic risk status according to the above grouping and the dietary exposures by adding 

product terms of the gene risk levels with one dietary exposure at a time, together with the genetic 

risk status and the dietary exposure in each of the discrete logistic regression models. We adjusted 

for age, sex and smoking in analyses performed within each study, and additionally adjusted for 

study site in analyses of pooled data of the two studies (Table 7, available at http://aao.journal.org).

We further compared the highest intake tertile versus the two lower tertiles in subgroups stratified 

by the three AMD genetic risk levels, with 15-year incident early, late or any AMD as the dependent 

variable and time-to-event as the discrete variable in logistic regression models. We adjusted for 

age and sex in all models, one model for each dietary exposure, in analyses of data from each study 

separately (Table 8), and adjusted for age, sex, smoking status and study indicator in pooled data 

analyses (Table 9).

Risk estimations are presented as odds ratios (OR) and 95% confidence intervals (CIs). SAS (Version 

9.2, SAS Institute, Cary, NC) was used for all analyses. OR above (or below) 1 indicated an increase 

(or decrease) in risk associated with the highest intake tertile relative to the risk associated with the 

lower intake tertiles.
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TABLE 9 - Associations of Dietary Antioxidants with Incidence of Early and Late Age-related Macular Degeneration 

by subgroups of population with none, one, or two or more risk alleles of the CFH and ARMS2 genes

Dietary Factors

Genetic Risk Group = 0 risk allele from CFH or ARMS2

Early AMD (n=215) Late AMD (n=14) Any AMD (n=229)

Fish (≥1 serving/week)† 1.17 (0.87, 1.57) 0.91 (0.29, 2.84) 1.14 (0.85, 1.51)

Lutein/zeaxanthin* 1.47 (1.09, 1.97) 0.65 (0.17, 2.43) 1.40 (1.05, 1.87)

Vitamin C* 0.91 (0.67, 1.24) 0.78 (0.20, 2.95) 0.91 (0.67, 1.23)

Dietary Factors

Genetic Risk Group = 1 risk allele from CFH or ARMS2

Early AMD (n=429) Late AMD (n=74) Any AMD (n=503)

Fish (≥1 serving/week)† 0.87 (0.70, 1.08) 0.98 (0.59, 1.63) 0.90 (0.73, 1.10)

Lutein/zeaxanthin* 0.91 (0.73, 1.13) 1.06 (0.63, 1.79) 0.92 (0.75, 1.13)

Vitamin C* 0.94 (0.75, 1.17) 1.33 (0.79, 2.24) 0.96 (0.78, 1.19)

Dietary Factors

Genetic Risk Group =2+ risk alleles from CFH and ARMS2

Early AMD (n=430) Late AMD (n=112) Any AMD (n=542)

Fish (≥1 serving/week)† 0.89 (0.71, 1.10) 0.54 (0.35, 0.85) 0.84 (0.69, 1.03)

Lutein/zeaxanthin* 0.78 (0.62, 0.99) 0.64 (0.40, 1.03) 0.75 (0.60, 0.93)

Vitamin C* 0.87 (0.70, 1.10) 0.67 (0.43, 1.06) 0.86 (0.70, 1.06)

Pooled data of BMES & RS, adjusting for age, sex, smoking and study site indicator

Abbreviations: AMD = age-related macular degeneration, ARMS2 = age-related maculopathy susceptibility 2, BMES = Blue 

Mountains Eye Study, CFH = complement factor H, LZ = lutein/zeaxanthin, RS = Rotterdam Study 

*Population-specific tertiles with the highest versus the other 2 (middle and lowest) tertiles, adjusted for age, sex, smoking, 

energy intake,  and study site.

† Compared to persons with fish consumption <1 serving/week. 

RESULTS

Comparisons of characteristics between the 1854 included and the 1800 excluded BMES participants, 

and between the 2778 included and the 3641 excluded RS participants, showed that those excluded 

were older, and more likely to have a history of diabetes or cardiovascular conditions, and early 

AMD. After adjusting for age, the significant differences in early AMD and AMD lesion distributions 

between the two groups disappeared (Table 2, available at http://aao.journal.org). In the BMES, 

excluded participants had lower mean intake levels of dietary antioxidants and ω-3 PUFA, compared 

to those who were included. In the RS, excluded and included participants had similar mean intake 

levels of dietary oxidants and ω-3 PUFA (Table 2, available at http://aao.journal.org). Of the 1800 

BMES excluded participants, 32% died before the 5-year follow-up examination. Of the 3641 RS 

excluded participants, 22% died before the 6-year follow-up examination.

Of the 1854 BMES participants, 723 had no AMD at all visits, 467 had incident early AMD and 88 had 

incident late AMD. Of the 2778 RS participants, the corresponding numbers were 2006 without AMD, 

657 with incident early AMD and 115 with incident late AMD.
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As expected, the mean ages of the incident AMD groups were higher compared to controls. In 

addition, crude data comparisons confirmed that in both the incident early and late AMD groups, 

the proportions of participants homozygous for the risk genotypes of CFH and ARMS2 were higher 

compared to controls, as were the proportions of current smokers in the late AMD groups (Table 3).

Comparison of Australian25;26 and Dutch27 national food consumption survey data (Table 4, available 

at http://aao.journal.org) showed that Australian men and women aged 45-64 years consumed more 

fruits, seafood and meat/poultry products than Dutch men and women aged 51-69 years. Although 

vegetable consumption levels were similar between Australian and Dutch men and women of 

similar age groups, Australians consumed less leafy vegetables than the Dutch, and Australian 

men consumed more carrots/root vegetables than Dutch men. Consumption levels of energy and 

other dietary items/food groups, macronutrients and micronutrients were similar, except for iron 

intake, which was substantially lower among Dutch men and women. We could not find data on LZ 

consumption levels from the national surveyreports.25-27

Energy and main macronutrient intake levels were similar between the BMES and RS populations 

(Table 5, available at http://aao.journal.org). While the mean intakes of ω-3 PUFA and zinc were similar 

between the two populations, the mean intakes of LZ (higher in the RS) and β carotene (higher in the 

BMES) differed substantially (Table 6). A consistent pattern was evident in both study samples that 

relatively lower proportions of participants in the incident late AMD group were in the highest intake 

tertile of LZ and ω-3 PUFA (Table 6).

Significant interaction between AMD genetic risk status and LZ intake with respect to risk of early 

or any AMD was evident in the RS but not the BMES. In pooled data analyses of the two cohorts, 

we found a significant interaction between AMD genetic risk status and LZ intake with respect to 

risk of early AMD (p=0.002) or any AMD (p=0.0009), and a marginally non-significant interaction 

between AMD genetic risk status and weekly consumption of fish (p=0.05) (Table 7, available at 

http://aao.journal.org). These interaction p values are smaller than the corresponding significance 

levels required after Bonferroni correction for three interaction tests for the three dietary factors 

(p<0.05/3=0.017). There was no significant interaction found between vitamin C, β-carotene or zinc 

intake and AMD genetic risk status on AMD risk. 

We next stratified the study samples according to their genetic risk levels and investigated the 

associations between baseline weekly consumption of fish, dietary intakes of LZ or vitamin C and 

incidence of early, late or any AMD in each study (Table 8), and then in pooled data of the two studies 

(Table 9). In the subgroup with ≥2 risk alleles of CFH and/or ARMS2, weekly fish consumption and 

the highest tertile intake of vitamin C were associated with reduced risk of any AMD in the BMES but 

not the RS (Table 8). There was a marginally non-significant association between the highest tertile 

intake of LZ and reduced risk of any AMD in both studies, where the association magnitude was 28% 

and 23% risk reduction in the BMES and RS, respectively (Table 8).

In pooled data analysis of the two cohorts, among participants with ≥2 risk alleles of the CFH and/

or ARMS2, a significant association between weekly consumption of fish and a 46% reduction in late 

AMD risk was evident. Similarly, significant associations were evident between the highest tertile 

intake of LZ and 22%-25% risk reduction in early and any AMD. The highest tertile intakes of LZ and 

vitamin C were non-significantly associated with an approximately 35% risk reduction in late AMD 

(Table 9). In the other two subgroups with no or one risk allele, no similar associations were evident 

(Tables 8 and 9).
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DISCUSSION

By using data from two population-based cohorts we showed consistent evidence that participants 

with ≥2 risk alleles of either or both the CFH (rs1061170) and/or ARMS2 (rs10490924) had a significantly 

reduced risk of early or any AMD, if they frequently consumed food items rich in LZ.

Findings from the BMES and RS individually were less consistent for the effect modification of weekly 

consumption of fish or high dietary vitamin C intake with AMD genetic risk level on AMD risk (Table 

8, bottom panel). Pooling data from the two cohorts and incorporating three follow-up visits with 

similar time intervals, we demonstrated a significant association of regular fish consumption with a 

46% reduction in late AMD risk, and a marginally non-significant association between high intake 

of vitamin C and reduced risk of late or any AMD, among participants with high genetic risk of AMD 

(Table 9, botom panel). These two effect modifications, however, appear to be driven by findings 

from the BMES. In contrast, the association between the highest tertile of LZ intake and reduced 

risk of early or any AMD in those with high genetic risk was driven by the findings from the RS, but 

the direction of the protective association was relatively consistent across the two cohorts, with risk 

estimates around 0.7-0.8, although not reaching statistical significance (Table 8, bottom panel). This 

effect modification became significant when data were pooled, with a 22% risk reduction in early 

AMD in participants with high genetic risk (Table 9, bottom panel). 

A recent report from the AREDS2 documented a protective effect of LZ supplement use over 5 years 

compared to no LZ use on AMD progression in persons in the lowest quintile of dietary LZ intake.27 

The relatively short follow-up duration and lack of stratified analyses conducted in genetic risk 

subgroups may explain the non-significant findings in primary analyses.28

A beneficial effect of ω-3 PUFA and fish consumption on AMD 29-31 has been reported previously, 

where the anti-inflammatory property of ω-3 PUFA32 is considered to be one of the underlying 

mechanisms. In addition, there is increasing recognition that a lipid metabolism pathway may be a 

key element in the course of AMD development.33 The outer segments of photoreceptors, subjected 

to high photo-oxidative stress, have high concentrations of PUFAs and high oxygen tension, and 

PUFAs are susceptible to oxidation in the presence of oxygen or oxygen-derived radical species.34 

It is possible that lipid oxidation/ peroxidation products activate or amplify local inflammatory 

processes via the complement system,33;35;36 and that ω-3 PUFA and antioxidants may counteract 

these processes. Evidence on possible mechanisms is emerging.37

Lutein and zeaxanthin are components of macular xanthophylls and dihydroxy-carotenoids. The light 

filtering capability is a passive antioxidant function of LZ, and thus potentially prevents bluelight 

from generating reactive oxygen species.38 LZ may also have an anti-inflammatory property.39 Our 

findings are in keeping with these known functions of ω-3 PUFA and LZ. The effect modification of LZ 

on participants with high AMD genetic risk suggests the possibility that susceptibility to activation 

and amplification of the complement pathways can be compensated by these antioxidants. An 

analogous observation is the significant association between blue light exposure and neovascular 

AMD in persons with low levels of plasma LZ, and vitamins C and E.40

The reliability of dietary data collected in nutritional epidemiology studies may be a concern. We 

compared dietary consumption survey data between two countries25-27 (Table 4, available at http://

aaojournal.org) and between two study samples (Table 5, available at http://aaojournal.org), that 

showed similar intake levels of energy, most main food groups and macronutrients between the 

two countries and the two study populations. The concordance of most dietary intakes between the 
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two populations suggests that the FFQs used and the resulting dietary data are likely to be robust, 

regardless of which specific FFQ was used. Nevertheless, we noticed differences in the intake levels 

of some food items between the two countries. The relatively high intake level of leafy vegetables by 

the Dutch and the relatively high intake level of carrots/root vegetables by Australian men, together 

with higher proportions of Australians eating these vegetables, may partly explain the differences 

in population mean intake levels of LZ and β carotene (Table 4, available at http://aaojournal.org). 

Different LZ intake estimation methods used by the two studies may also contribute to the difference 

in mean intake estimates of this nutrient.

Strengths of this study include long-term follow-up of population-based samples, photographic 

documentation of AMD status with incident late AMD cases cross-validated, and reasonable inter-

grader reproducibility on early AMD detection between study graders. A major limitation of this 

study is a degree of heterogeneity in dietary intake patterns and consumption levels of some 

micronutrients between the two populations. We have used relative measures for dietary intakes and 

adjusted for different study sites in the statistical models. Findings for relative measures are directly 

applicable to populations of specific geographic locations regardless of absolute intake levels. Other 

limitations include survival bias to which our cohorts are subject, non-availability of serum or plasma 

nutrient levels and lack of specific data for oily fish consumption. Misclassification or reduced power 

from these limitations will tend to bias the associations towards the null. There was no evidence 

supporting associations between mortality and the two genotypes or the dietary antioxidants under 

investigation, so survival bias should have only minimal effect on the associations. Even with pooled 

data from two cohorts, we had a limited numbers of late AMD cases and therefore insufficient power 

to detect a significant association between LZ intake and late AMD incidence in the high genetic risk 

subgroup (Table 9).

Caution is needed in interpreting these findings. Nutrients do not work alone but interact with genes 

and the internal environment of the host, which may be influenced by many factors such as lifestyle, 

intestinal microorganisms and the uptake ability of the host, all of which may lead to differences in 

bioavailability of specific nutrients on disease pathways.

In conclusion, we showed that dietary intake of LZ is associated with an approximate 20% reduction 

in risk of developing early AMD among persons with high genetic risk of AMD. The relatively 

consistent pattern of the effect modifications between LZ intake and AMD-related genetic risk levels 

in our two cohorts may have clinical implications in the management of AMD patients. Future studies 

are warranted to confirm this effect modification of major AMD-related genes and dietary intake 

of antioxidants on the risk of AMD. Our findings also highlight the importance of incorporating 

information from both genetic and environmental exposures to capture the complexity of disease 

pathways and pathogeneses of conditions such as AMD.
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ABSTRACT

Purpose Prediction models for age-related macular degeneration (AMD) based on case-control 

studies have a tendency to over-estimate risks. The aim of this study is to develop a prediction model 

for late AMD based on data from population-based studies.

Design Three population-based studies: the Rotterdam Study (RS), the Beaver Dam Eye Study (BDES), 

and the Blue Mountains Eye Study (BMES) from the Three Continent AMD Consortium (3CC).

Participants Persons (n=10,106) with gradable fundus photographs, genotype data, and follow up 

data without late AMD at baseline.

Methods AMD features were graded on fundus photographs using the 3CC AMD severity scale. 

Associations with known genetic and environmental AMD risk factors were tested using Cox 

proportional hazard analysis. In RS, the prediction of AMD was estimated for multivariate models 

by area under receiver operating characteristic curves (AUC). The best model was validated in BDES 

and BMES, and associations of variables were re-estimated in the pooled data set. Betas were used 

to construct a risk score, and risk of incident late AMD was calculated using Cox proportional hazard 

analysis. Cumulative incident risks were estimated using Kaplan-Meier product-limit analysis.

Main Outcome Measure Incident late AMD determined per visit during a median follow up period 

of 11.1 years with a total of 4-5 visits.

Results Overall, 363 participants developed incident late AMD, 3378 early AMD, and 6365 remained 

free of any AMD. The highest AUC was achieved with a model including age, sex, 26 single nucleotide 

polymorphisms in AMD risk genes, smoking, BMI, and baseline AMD phenotype. The AUC of this 

model was 0.88 in RS; 0.85 in BDES and BMES at validation; and 0.87 in the pooled analysis. Individuals 

with low risk scores had a hazard ratio (HR) 0.02 (95% confidence interval [CI] 0.01-0.04) to develop 

late AMD; those with high risk scores had HR 22.0 (95%CI 15.2-31.8). Cumulative risk of incident late 

AMD ranged from virtually 0 to over 65% for those with the highest risk scores.

Conclusion Our prediction model is robust and distinguishes well between those who will develop 

late AMD and those who will not. Estimated risks were lower in these population-based studies than 

in previous case-control studies.
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INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly of 

industrialized countries1,2. Approximately 21 million elderly individuals are affected worldwide, and 

this number is expected to rise dramatically with the aging population3,4. AMD can be divided in 

several stages; early AMD, characterized by subcellular deposits (drusen) and pigmentary changes, 

and late AMD, subdivided into atrophy of the retinal pigment epithelium (dry AMD) and choroidal 

neovascularization (wet AMD). Despite improved treatment options, late AMD can cause irreversible 

blindness, while severe stages of early AMD are mostly asymptomatic they signal a high risk of 

progression to late AMD5.

Age, early AMD phenotype, and genetic and environmental factors play important roles in the 

pathogenesis of late AMD6-11. These factors may be used to predict this end stage and to identify 

high risk individuals. Reasons for assessing predictive values may be risk-dependent (personalized) 

patient care and surveillance strategies for therapy. Future intervention research such as randomized 

controlled clinical trials can use prediction models to select individuals with a high risk of outcome 

events.

Previously reported prediction models were based on selections of cases and non-affected 

controls12-28. Most studies compared only the extreme ends of disease, excluding the majority of the 

population with an intermediate disease risk. This has inherent methodological concerns, because 

the disease risk is overestimated by design. Population-based studies include a whole spectrum of 

risk levels, and therefore findings from these studies would be more generalizable29 and better suited 

for clinical implementation.

In this study, we present a prediction model for late AMD based on population-based cohort studies 

from three continents. We optimized a prediction model in one of the cohorts, and subsequently 

validated this in the other two cohorts. We included established genetic, environmental, and clinical 

risk factors in the model, assessed relative as well as cumulative risks, and provided a risk score which 

can be used to estimate the risk of AMD in individuals.

METHODS

For this paper we followed the guidelines for genetic risk prediction studies (GRIPS)30.

Study Populations

The Three Continent AMD Consortium (3CC) consists of four population-based studies: the European 

Rotterdam Study (RS), the American Beaver Dam Eye Study (BDES) and the Los Angeles Latino Eye 

Study (LALES), and the Australian Blue Mountains Eye Study (BMES). For the purposes of this study, 

LALES was excluded due to absence of genotype and follow up data.

The RS is a prospective population-based cohort study investigating chronic diseases in the elderly. 

All inhabitants aged 55 years and older living in a suburb of Rotterdam, the Netherlands, were invited 

to participate in the study31,32. Of the initial cohort of 10,275 eligible individuals, 7,983 (78% of those 

eligible) participated in the overall study (98% Caucasian). The ophthalmologic part began later, 

and included 6780 participants (78% of those eligible) participated. Baseline examinations took 

place from 1990-1993, and four follow-up examinations were performed in 1993-1995, 1997-1999, 
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2002-2004 and 2009-2011, respectively. The Erasmus Medical Center Ethics Committee approved 

the study, which complies with the Declaration of Helsinki. All participants gave written informed 

consent for participation in the study.

The BDES is a prospective cohort study investigating eye diseases in the population of Beaver Dam, 

Wisconsin (USA)33. To identify all residents in the city or township of Beaver Dam who were 43 to 

84 years of age, a private census was performed from 1987-1988. Of the 5,924 eligible individuals, 

4,926 (83% of those eligible) participated in the baseline examination between 1988-1990 (99% 

Caucasian). There were follow-up examinations every five years; 1993-1995, 1998-2000, 2003-2005, 

2008-2010. BDES was approved by the Institutional review board from the University of Wisconsin-

Madison and adhered to the tenants of the Declaration of Helsinki. All participants provided signed, 

informed consent for participation in the study.

The BMES is a prospective cohort study of eye diseases and other health outcomes in an urban 

population34. All residents aged 49 years or older, living in two postcode areas of the Blue Mountains 

region in West Sydney, Australia, were invited to participate in the study. In 1992-1994 baseline 

examinations were performed in 3,654 participants (82.4% of those eligible). Re-examinations were 

performed after five, ten and fifteen years (in 1997-1999, 2002-2004 and 2007-2009, respectively). 

All BMES examinations were approved by the Human Research Ethics Committees of the Western 

Sydney Area Health Service and the University of Sydney, and complied the Declaration of Helsinki. 

All participants provided written informed consent for participation of the study.

Participants were eligible for the current analysis when genotype data, as well as gradable fundus 

photographs at baseline, and at least one follow-up eye-examination were available (Figure 1, 

available at http://aaojournal.org). Persons with late AMD at baseline were excluded. This resulted in 

4753 (RS), 3542 (BDES) and 1811 (BMES) participants available for analysis, with a median follow-up 

of 10.7 (Interquartile range [IQR] 12.8; RS), 15.6 (IQR 10.4; BDES), 11.8 (IQR 5.6; BMES) years. In total, 

10,106 participants with a median follow-up of 11.1 (IQR 11) years were included in the analysis. To 

investigate possible selection bias, we analyzed whether persons excluded from this study differed 

in baseline level of AMD from those who were included. The two groups did not differ in early AMD 

levels (10-40) after adjustment for age and sex (P=0.95).

Diagnosis of AMD

All participants underwent fundus photography after pharmacologic mydriasis. Fundus 

transparencies of all studies were graded according to the Wisconsin Age-Related Maculopathy 

Grading35,36 by trained graders under the supervision of senior retinal specialists or senior researchers 

(RS: PTVMdJ, JRV, CCWK; BDES: RK, BEK; BMES: JJW and PM). The graded fundus photographs were 

classified using a classification common to all studies: the 3CC AMD severity scale37 (Table 1, available 

at http://aaojournal.org). All prevalent and incident late AMD cases from each of these three studies 

were cross-checked by investigators of the other two studies, with consensus obtained via discussion 

over multiple teleconferences. The eyes of each participant were graded and classified separately; 

and the eye with the more severe grade was used to classify the person.

Genotyping

Genomic DNA was extracted from peripheral blood leukocytes. All eligible study participants in the 

RS were genotyped with the Illumina Infinium II HumanHap550 array, or Taqman assays (Applied 

Biosystems, Foster City, California, USA). HapMap CEU data (release #22) was used for imputation.
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DNA from BDES participants was extracted from the buffy coats of blood obtained at baseline 

examinations or subsequent exams that have been stored frozen at -80ºC. DNA samples arrayed 

in 96-well plates were submitted for genotyping via an Illumina iSelect Custom Genotyping Panel 

(Illumina Inc, CA, USA) at the Genomics Core Facility at Case Western Reserve University, or via the 

KASP Assay at LCG Genomics (Teddington, Middlesex, UK). The data collected was analyzed using 

Illumina’s Genome Studio, or via the KASP SNP Genotyping System. The assays were controlled for 

quality by examining cluster separation values, call frequency, ABR mean values and ABT mean 

values. Untyped SNPs were imputed using HapMap CEU (release #22) as reference.

In the BMES, all participants with DNA available were genotyped using Illumina Human670-Quad 

v1 custom array at the Wellcome Trust Centre for Human Genetics, Sanger Institute, Cambridge as 

part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). A smaller subset of participants (N 

= 1,356) was also independently genotyped using the Illumina 610-Quad genotyping array at the 

Hunter Medical Research Institute, Newcastle, Australia. Following quality control, the genotyped 

data were imputed from the 1000 Genomes (Version 1) reference using IMPUTE software.

Selection of Single Nucleotide Polymorphisms (SNPs)

For selection of AMD genes, we reviewed publications on AMD genetics 38,39 and prediction of AMD 12-28. 

From these, we selected 41 tag SNPs which were available in all three cohorts, and which were not in 

linkage disequilibrium (r2 <0.60). Genotypes of SNPs were coded as 0 for carriers of two major alleles; 

1 for the heterozygous genotype; and 2 for carriers of two minor alleles. When none of the cases were 

carriers of two minor alleles, genotypes of the SNPs were coded as 0 for carriers of two major alleles; 

and 1 for all carriers of at least one minor allele. As a first step, each SNP was tested for association 

with late AMD in all three cohorts.

For each locus with multiple SNPs, we performed a backwards Cox proportional hazard analysis to 

determine the best predictive SNPs for incident late AMD within each locus with data from the RS.

Assessment of non-genetic variables

All non-genetic variables used in the analyses were assessed using baseline data. Information on 

cigarette smoking was obtained in an interview at baseline and categorized as never, former, and 

current for smoking. Height, weight and blood pressure were measured at the beginning of baseline 

examination. Body mass index (BMI) was calculated by dividing weight (kg) by the height squared 

(m2). The BMI variable was categorized as not overweight or obese (BMI=< 25) and overweight or 

obese (BMI> 25). Age (yrs) at baseline was categorized in three categories; <65, 65-75, >75 years. 

Baseline AMD grading was entered into the analysis as categorized variables with levels 10-40.

Statistical analyses

Throughout the entire study, incident late AMD was used as the outcome variable; non-incident late 

AMD, including those persons remaining at an early AMD stage, were used as the reference group. 

All analyses were performed using SPSS version 20.0; SPSS INC, Chicago, Illinois.

Variables were analyzed for association with incident late AMD in the three cohorts using Cox 

proportional hazard analysis, adjusting for age and gender. We constructed five different models 

based on a minimal and a maximal selection of clinical, genetic, and environmental factors. Model 1 

was a minimal model including only age and sex; model 2 was a non-genetic model including age, 

sex, environmental and ocular factors; model 3 was a minimal genetic model including age, sex, 

and major genetic AMD risk variants (CFH Y402H, ARMS2 A69S, C3 R102G, C2 L9H, CB R32Q); model 
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4 was a maximal genetic model including age, sex, and 26 genetic AMD risk variants (see section 

SNP selection above), and model 5 was a maximal gene-environmental model including age, sex, 

environmental, ocular factors, and the 26 genetic AMD risk variants. For each model, we calculated 

the area under the curve (AUC) of incident late AMD in the RS, and validated the best model in BDES/

BMES.

Subsequently, we estimated the association of all variables in the best model using multivariate 

Cox proportional hazard analysis in the pooled dataset of all three cohorts and calculated the AUC. 

Calibration of the model was tested using the Hosmer-Lemeshow test. This goodness of fit test 

shows how well predicted risks match the observed risks. To test whether non-major genetic AMD 

risk variants could be discarded from this model without jeopardizing the AUC, backwards regression 

(eliminating SNPs with P > 0.05) using Cox proportional hazard analysis was carried out and the AUC 

of the new model was calculated within the pooled dataset. In this dataset, we estimated the beta of 

each variable from the best model using multivariate Cox proportional hazard analysis. The estimated 

beta of a variable was the individual risk score of that variable. Next, we created a summary risk score 

based on the sum of the betas from the multivariate Cox proportional hazard analysis. Risk scores 

were rounded off, and frequencies of the risk scores were plotted stratified for incident late AMD and 

no AMD. We calculated risk of incident late AMD with the middle risk score (3) as the reference using 

Cox proportional hazard analysis. Risk scores at the extreme ends were pooled to increase sample 

size due to limited numbers.

We calculated the cumulative risk of incident late AMD per risk score. We assigned the age of onset 

for incident late AMD as the median between the examination at which late AMD was first observed 

and the previous examination. For participants who did not develop late AMD, we used age at last 

examination for censoring. All participants aged 90+ years were censored at age 90 to maintain 

unbiased estimates. Risks were calculated using Kaplan-Meier product-limit analysis. Participants 

who died or were lost to follow-up were censored at the time of the last examination. Cumulative 

risks stratified for the risk score were compared with the overall cumulative risk based on incidence 

of late AMD (prior risk) using log-rank tests of equality (Mantel-Cox).

Missing data were encountered in the analysis of each model. Only participants with data on all 

variables in the model entered the analysis.

RESULTS

In total, 363 persons developed incident late AMD during a median follow-up (fup) time of 11.1 years 

(IQR 11), of which 132 cases in RS (fup 10.7; IQR 12.8), 153 cases in BDES (fup 15.6; IQR 10.4), and 

78 cases in BMES (fup 11.8; IQR 5.6). Incidence rates for the three studies were 2.89/1000 person-

years (PY), 2.96/1000 PY, and 3.66/1000 PY for RS, BDES and BMES respectively. The distribution of 

demographic characteristics and environmental risk factors differed slightly among the three cohorts 

(Table 2). Since the inclusion criteria for age were higher than for the other studies, participants in 

the RS were older. Early AMD (level 20-40) at baseline was more frequent in RS participants; BMI 

was higher in BDES participants; and current smokers were less frequent in BMES participants. The 

frequency of genetic risk alleles was not significantly different among the three studies, although 

there were slight differences in genotype distributions. Visual inspection of a principle component 

analysis of all genetic data against HapMap CEU data (NCBI build 36, release 22) as reference showed 

similar plots for the three cohorts (data not shown).
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Risk factors were tested separately for association with incident late AMD in all cohorts, adjusting for 

age and sex. (Table 3, available at http://aaojournal.org). Most SNPs in the genes CFH, ARMS2, CFHR5 

were significant in all three cohorts (P<0.05). SNPs in the genes LIPC, TIMP3, ADAMTS9, IER3/DDR1, 

TNFRSF10A, TGFBR1, and B3GALTL were not significant in any single cohort. In all other genes, SNPs 

were significant in at least one of the cohorts. In all three studies, increasing severity levels of early 

AMD stages at baseline, based on the 3-CC AMD severity scale (Table 1, available at http://aaojournal.

org) was associated with a highly significant risk of incident late AMD. Of the environmental risk 

factors, current smoking showed a significant association in the RS and BMES, BMI showed no 

significant association with incident late AMD in all three cohorts. To determine the best set of 

markers for each locus, all SNPs were analyzed per locus in a multivariate Cox proportional hazard 

analysis. A total of 26 SNPs were found to be suitable for further analyses.

Prediction models were built using various sets of risk factors, and tested in RS (Table 4). Model 1, a 

minimal model which included only age and sex, provided an AUC of 0.60 (95% confidence interval 

[CI] 0.55-0.65). Adding environmental and ocular factors improved the AUC to 0.78 (95% CI 0.74-0.82, 

model 2). Adding only major AMD genes to model 1 increased the AUC to 0.73 (95% CI 0.69-0.78, 

model 3). Next, a maximal genetic model was created which included all 26 SNPs. This increased the 

AUC to 0.82 (95% CI 0.79-0.86, model 4). Finally, we combined all variables from models 1-4 to assess 

the best possible prediction. This resulted in an AUC of 0.88 (95% CI 0.85-0.90, model 5). Validation 

of this model in the pooled dataset of BDES and BMES (Table 5) showed an AUC of 0.85 (95% CI 

0.82-0.88). To further improve the prediction model, we pooled all three cohorts and re-estimated 

the risks of the variables included in model 5 (Table 6). The AUC in the three cohorts combined 

was 0.87 (95%CI 0.85-0.89) and the model had a good calibration (P= 0.55). We also investigated 

the possibility to minimalize this model. Using backwards regression, 13 SNPs could be excluded 

from the model and provided a somewhat lower AUC of 0.86 (95% CI 0.84-0.88) (Table 7, available 

at http://aaojournal.org). The model with the best AUC in the three cohorts combined dataset was 

used for further analyses.

We calculated a risk score (Table 6) based on the betas from the pooled analysis, which ranged from 

-3.99 to 7.56. We rounded off the estimates and plotted their distribution stratified for incident or 

no incident late AMD (Figure 2). The plot showed a bimodal distribution with a large frequency 

difference between the groups for scores lower than 2, and scores greater than 3. The frequencies 

of risk scores 2 and 3 showed relatively small differences between cases and non-cases. Of note, all 

persons (n=8) with risk score 8 had risk alleles in the CFH, ARMS2, and C3 genes, and no protective 

alleles in C2/CFB. By contrast, all persons with risk score -3 (n=29) carried a protective variant in C2/

CFB, and were free of variants in CFH and ARMS2, except one person who carried a heterozygous 

variant in ARMS2. Risk of incident late AMD for individuals with risk score 6 to 8 was HR 23.2 (95% CI 

15.9-34.0); for those with risk score -3 to 0 HR 0.02 (95% CI 0.01-0.04).

Cumulative risk of incident late AMD was calculated for each risk score, and compared to the overall 

AMD cumulative risk of incident late AMD. Individuals (n=181) with risk score 6 to 8 had a cumulative 

risk of 65.6% (SE 0.057) to develop late AMD at age 90 years, while those (n=2751) with risk score -3 to 

0 had virtually no risk of developing incident late AMD (0.5%; SE 0.002). The overall risk of AMD for our 

study population prior to testing was 17.4% (SE 0.013) at age 90 (Figure 3), which was significantly 

different from all strata apart from risk score 3 (P= 0.71).



216 Chapter 6.1

TABLE 4 - Predictive values for the tested models in the Rotterdam Study 

Model Variables AUC (95% CI) SE No late AMD/ Late AMD (N)

1 Minimal model 0.60 (0.55-0.65) 0.023 4621/132

  Age      

  Sex      

2 Non genetic model 0.78 (0.74-0.82) 0.022 4561/132

  Age      

  Sex      

  AMD baseline grade      

  Smoking      

  BMI      

3 Minimal genetic model 0.73 (0.69-0.78) 0.022 4226/121

  Age      

  Sex      

  ARMS2 rs10490924      

  CFH rs1061170      

  C2/CFB rs641153      

  C3 rs2230199      

  C2/CFB rs4151667      

4 Maximal genetic model 0.82 (0.79-0.86) 0.016 4226/121

  Age      

  Sex      

  ARMS2 rs10490924      

  CFH rs800292      

  CFH rs12144939      

  CETP rs3764261      

  C2/CFB rs641153      

  COL8A1 rs13081855      

  C2/CFB rs4151667      

  C3 rs433594      

  TGBR1 rs334353      

  SKIV2L rs429608      

  C3 rs2230199      

  VEGFA rs943080      

  ADAMTS9 rs6795735      

  CFH rs1061170      

  TIMP3 rs5749482      

  IER3/DDR1 rs3130783      

  LPL rs256      

  MYRIP rs2679798      

  SLC16A8 rs8135665      

  RAD51B rs8017304      

  CFI rs10033900      
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TABLE 4 - (continued) 

Model Variables AUC (95% CI) SE No late AMD/ Late AMD (N)

  FRK/COL10A1 rs3812111      

  ABCA1 rs1883025      

  B3GALTL rs9542236      

  LIPC rs12912415      

  TNFRSF10A rs13278062      

5 Maximal gene-environment model 0.88 (0.85-0.90) 0.015 4171/121

  Age      

  Sex      

  ARMS2 rs10490924      

  CFH rs12144939      

  CFH rs800292      

  C3 rs433594      

  C2/CFB rs641153      

  TGBR1 rs334353      

  SKIV2L rs429608      

  CETP rs3764261      

  C2/CFB rs4151667      

  IER3/DDR1 rs3130783      

  C3 rs2230199      

  ADAMTS9 rs6795735      

  LPL rs256      

  COL8A1 rs13081855      

  SLC16A8 rs8135665      

  FRK/COL10A1 rs3812111      

  CFH rs1061170      

  TIMP3 rs5749482      

  VEGFA rs943080      

  MYRIP rs2679798      

  CFI rs10033900      

  TNFRSF10A rs13278062      

  RAD51B rs8017304      

  B3GALTL rs9542236      

  ABCA1 rs1883025      

  LIPC rs12912415      

  AMD baseline grade      

  Smoking      

  BMI      

Abbreviations: AMD, age-related macular degeneration; AUC, area under the curve; BMI, body mass index; CI, confidence 

interval; SE, standard error
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TABLE 5 - Model 5, the maximal gene-environment model, in the three cohorts

Study AUC (95% CI) SE No late AMD/late AMD (N)

RS 0.88 (0.85-0.90) 0.015 4171/121

BDES + BMES pooled 0.85 (0.82-0.88) 0.015 3634/156

3CC* 0.87 (0.85-0.89) 0.010 7805/277

* based on risk estimates re-analyzed in the complete data set

Abbreviations: 3CC, 3-Continent AMD Consortium; AMD, age-related macular degeneration; AUC, area under the curve; BDES, 

Beaver Dam Eye Study; BMES, Blue Mountains Eye Study; CI, confidence interval, RS, Rotterdam Study; SE, standard error

TABLE 6 - Risk estimates from Cox proportional hazard analysis based on the Three Continent AMD Consortium

Variable Code Beta per code

Age =<65=0 / 65-75=1 / 75+=2 0 / 1.558 / 2.433

Gender M=0 / F=1 0 / 0.320

ARMS2 rs10490924 GG=0 / GT=1 / TT=2 0 / 0.779 / 1.720

CFH rs800292 GG=0 / GA=1 / AA=2 0 / -0.899 / -1.614

C2/CFB rs4151667 TT=0 / TA or AA=1 0 / -1.245

CFH rs12144939 GG=0 / GT=1 / TT=2 0 / -0.947 / -1.195

COL8A1 rs13081855 GG=0 / GT=1 / TT=2 0 / 0.223 / 0.890

C3 rs2230199 CC=0 / GC=1 / GG=2 0 / -0.033 / 0.755

SLC16A8 rs8135665 CC=0 / TC=1 / TT=2 0 / 0.313 / 0.648

C3 rs433594 GG=0 / GA=1 / AA=2 0 / -0.110 / -0.591

C2/CFB rs641153 GG=0 / GA or AA=1 0 / -0.592

SKIV2L rs429608 GG=0 / GA=1 / AA=2 0 / 0.027 / 0.590

CETP rs3764261 CC=0 / CA=1 / AA=2 0 / 0.215 / 0.478

ADAMTS9 rs6795735 CC=0 / TC=1 / TT=2 0 / 0.130 / 0.424

RAD51B rs8017304 AA=0 / AG=1 / GG=2 0 / -0.414 / -0.138

TIMP3 rs5749482 GG=0 / GC or CC=1 0 / -0.357

TGBR1 rs334353 TT=0 / TG=1 / GG=2 0 / 0.039 / -0.336

CFH rs1061170 TT=0 / TC=1 / CC=2 0 / 0.175 / 0.278

FRK/COL10A1 rs3812111 TT=0 / TA=1 / AA=2 0 / -0.278 / -0.118

CFI rs10033900 CC=0 / TC=1 / TT=2 0 / -0.070 / -0.223

TNFRSF10A rs13278062 TT=0 / TG=1 / GG=2 0 / 0.093 / 0.196

B3GALTL rs9542236 TT=0 / TC=1 / CC=2 0 / -0.231 / -0.169

IER3/DDR1 rs3130783 AA=0 / AG=1 / GG=2 0 / 0.029 / 0.166

MYRIP rs2679798 AA=0 / AG=1 / GG=2 0 / 0.059 / 0.156

VEGFA rs943080 CC=0 / TC=1 / TT=2 0 / 0 / 0.098

ABCA1 rs1883025 CC=0 / TC=1 / TT=2 0 / -0.046 / 0.076

LIPC rs12912415 AA=0 / AG or GG=1 0 / -0.098

LPL rs256 CC=0 / TC or TT=1 0 / -0.048

AMD baseline grade Level 10=0 / Level 20=1 / Level 30=2 / Level 40=3 0 / 1.458 / 2.560 / 3.398

Smoking Never=0 / Past=1 / Current=2 0 / 0.164 / 0.651

BMI =<25=0 / 25+=1 0 / 0.007

Abbreviations: AMD, age-related macular degeneration; BMI, body mass index; F, female; M, male
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No late AMD Late AMD Hazard Ra o (HR)

<< Risk score >>
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FIGURE 2 - Distribution of risk score in incident late AMD and no late AMD in 3CC, and hazard ratios of incident 

late AMD

The X-axis represents the risk score category, the left y-axis frequency as percentages, the right y-axis hazard 

ratio of incident late AMD. The red bars represent no late AMD; the purple bar incident late AMD. The dark blue 

line represents the hazard ratio (HR) of incident late AMD. Category 3 is the reference category (R) and has HR 

1.00. Risk score -3 to 0, and risk scores 6 to 8 were combined for HR. Error bars indicate the 95% confidence 

interval (CI) of HR.

Abbreviations: 3CC, Three Continent AMD Consortium; AMD, age-related macular degeneration; R, reference
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DISCUSSION

In three independent population-based studies from three continents, we investigated all well-

known genetic and non-genetic risk factors for AMD. We found that the best prediction for late AMD 

was based on age, sex, 26 genetic variants, two environmental variables, and early AMD phenotype. 

The accuracy of a prediction model including all these variables was 0.88 in the RS. As similar risk 

estimates were found in BDES and BMES, the model proved to be well generalizable to persons 

from Caucasian descent, living on other continents. Translation of the model to the individual level 

provided good discrimination between those at a high life-time risk of late AMD and those with 

virtually no risk , a risk difference of 65%.

A major strength of our study is the inclusion of a general population, unbiased by AMD risk 

factors. The study samples had included a wide spectrum of AMD lesion phenotypes but not only 

the extreme ends of disease, which is representative of real scenario in the population. Inclusion 

of wide spectrum of risk factors distributions and various levels of risk profiles of our population-

based samples ensures a realistic, less biased prediction for all risk categories. Additional strengths 

are the use of longitudinal observational samples to predict incident cases and validation in two 

independent population-based cohorts with similar study designs. All the strengths facilitate our 

comprehensive analyses and calculation of cumulative risk of incident late AMD.

Limitations included the relatively low number of incident late AMD cases (n=363), hampering 

further risk estimation to AMD subtypes. In addition, we did not include several risk factors, such 

as dietary factors, biomarkers, or rare genetic variants10,40-43. Dietary factors and biomarkers are 

difficult variables to obtain, but their inclusion would have improved the sensitivity of the predictive 

value. Inclusion of genetic mutations is unlikely to contribute to population risk, due to their low 

frequencies. Finally, the three cohorts had subtle differences in methodology, which have been 

discussed by Klein et al.37

Most previously published AMD prediction models have been based on case-control studies 

(Table 8)12-28. Most of these models included demographic, genetic and environmental factors, and 

reached a good prediction for AMD (AUC 0.68-0.94). The study which reported the highest AUC 

(0.94) included complement activation22. However, measurement of activation fragments requires 

rather intense work-up and specific expertise, and is therefore unlikely to occur in a standard clinical 

setting. The other studies have some drawbacks as well. Gold et al. reported a sensitivity of 70% 

and a specificity of 50% for their model 14, making the prediction of low risk outcomes inaccurate. 

Hageman et al. showed a better specificity and sensitivity, but their model did not incorporate any 

non-genetic factors including age16. Furthermore, their model was based on prevalence data, which 

is less appropriate for estimation of prognosis44. Most other case control studies also lacked follow-

up data. The reports with follow-up data were almost inclusively based on data from the AREDS 

study 20,23,24,27. Although these investigated persons from the same source population, they differed 

substantially from each other in design and inclusion of risk factors, leading to great variation in 

prediction outcomes. Our study shows that the sensitivity of risk prediction depends on the number 

of variables included in the model, and highest sensitivity is achieved with a full model including 

the major genes, many of the recently discovered minor genetic variants, smoking, BMI, and existing 

AMD phenotypes.
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What may be the benefits of prediction tests? Most current counseling provided to family members 

of late AMD cases is based on clinical parameters. A prediction test may improve the identification 

of true high-risk individuals. As the estimation of cumulative risk of incident AMD makes the risk 

very apparent, it may encourage an individuals to alter their lifestyle with the aim to decrease the 

risk of AMD. For instance, one can stop smoking, eat foods rich in antioxidants, and increase physical 

exercise to lower risk of progression to late AMD9,45. There may be benefits for patients with late AMD. 

Various studies have shown that persons with neovascular AMD who do not respond to anti-VEGF 

therapy are at higher genetic risk46-49. These patients may need more intensive treatment regimens. 

Lastly, current intervention trials select study participants mainly on the basis of phenotypes. 

Inclusion of high-risk individuals, identified by a prediction test, may improve homogeneity of the 

study population and prediction of AMD outcome events.

In summary, a risk score based on a large number of genetic risk variants for AMD, the environmental 

factors smoking and BMI, and early AMD phenotype provided a good prediction of incident late AMD 

cases in this study. A model incorporating non-genetic factors performed better than a model based 

on a minimal number of genetic factors, but after inclusion of many genes the model performed 

better than a model including only non-genetic factors. Inclusion of all risk factors provided the 

best prediction. As personalized medicine is the future, prediction tests will become more and more 

implemented as clinical tools. In such case, only comprehensive tests will be useful for AMD.
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ABSTRACT

Purpose Genetic testing may be the next step in clinical medicine for a more personalized approach 

in determining risk of disease. Direct-to-consumer (DTC) personal genome tests may fulfill this role. 

We explored the practicability and predictive value of DTC-tests from four companies (23andMe, 

deCODEme, Easy DNA, Genetic testing laboratories) for age-related macular degeneration (AMD).

Methods Body specimens of three individuals were collected and sent to four companies for 

DNA genotyping and disease risk estimation. In addition, DNA was also genotyped using Illumina 

HumanOmniExpress 12v1 array in the Rotterdam Study laboratory, and risk estimates of AMD were 

calculated using the validated prediction model from the population-based Three Continent AMD 

Consortium.

Results Genotyped results of the four DTC-tests matched genotyping performed by the Rotterdam 

Study laboratory. The estimated risks provided by the companies varied considerably in the tested 

individuals, from a 1.6-fold difference for overall relative risk to an up to 12-fold difference for lifetime 

risk. The lifetime risks for the individuals ranged from 1.4-16.1% in the DTC-tests, while they varied 

from 0.5-4.2% in the validated prediction model. Most important reasons for the differences in risks 

were the testing of only a limited set of genetic markers, the choice of the reference population, and 

the methodology applied for risk calculation.

Conclusion Direct-to-consumer personal genome tests are not suitable for clinical application as 

yet. More comprehensive genetic testing and inclusion of environmental risk factors may improve 

risk prediction of AMD.
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INTRODUCTION

Genetic studies of age-related macular degeneration (AMD) have elucidated a major proportion of 

its genetic background. Currently, genome-wide studies (GWAS) have identified associations with 

>30 genetic loci for this disease, explaining a large part of the heritability of AMD1,2. Subsequently, 

these genomic findings have been incorporated into prediction models, many of which provide a 

>80% discriminative accuracy for late AMD3-22. This high predictive ability makes AMD particularly 

suitable for genetic testing, which may be the next step to a more personalized approach in clinical 

medicine.

Direct-to-consumer (DTC) personal genome tests had been made available for consumers and 

thousands have purchased these tests via the internet to determine a personal disease risk. Recently, 

methods of three DTC-tests have been examined and compared for several diseases23. AMD was the 

disease for which each test obtained the best predictive ability. Several companies offered genetic 

tests for AMD and implementation of these tests in the clinic could help identify individuals at risk of 

developing the disease to apply risk dependent patient care and surveillance strategies. Therefore, 

the accuracy of the risk estimates will be a great concern, and will determine whether such tests will 

be meaningful in the clinic.

In this study, we evaluated the results of AMD prediction tests provided by four major companies. We 

sent bio-samples from three individuals to these companies to test proof of principle, and reviewed 

the sampling process, the type of analysis, the genotyping, and the risk information. In addition, we 

compared results to a validated prediction model based on population studies.

METHODS

Experimental design

Evaluation of test methodology

Study participants

Three investigators (GB, JV, CK) agreed to voluntarily participate in the study, and signed informed 

consent.

DTC-tests for AMD

We searched for internet-based DTC-tests for AMD using a web search engine and the word groups 

“genetic testing for age-related macular degeneration”, “genetic prediction of age-related macular 

degeneration”, and “genetic tests for age-related macular degeneration”. Only companies available 

for European citizens and testing more than one single nucleotide polymorphism (SNP) were 

eligible, and of these, four companies were selected; i.e., 23andMe, deCODEme, Easy-DNA, The 

Genetic Testing Laboratories, Inc.

23andMe

https://www.23andme.com/

This privately-held American company was founded in 2006 with the intention to empower individuals 

in accessing their own genetic information and to stimulate a way into more personalized medicine. 

One can order a single ‘spit’ kit for $99 (shipping costs $14.95 - $118.95) from the website on internet, 

and a sample collection kit will be sent by mail with instructions how to provide a saliva sample and 
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details for returning the sample. An assisted collection kit for persons having trouble to spit can be 

ordered together with the DTC-kit for an additional $25, requiring only half the amount of saliva. 

The returned saliva sample will arrive at the contracted LabCorp’s Clinical Laboratory Improvement 

Amendments (CLIA) certified laboratory, where DNA will be isolated from cells in the saliva and 

processed on an Illumina® HumanOmniExpress array customized by 23andMe (>1 million SNPs, 

call rate above 98%). These SNPs provide information about traits, carrier status, and risks for over 

hundred diseases, including AMD. The risk for developing AMD is estimated based on the risk in the 

reference population and an overall relative risk (RR) representing risks of five SNPs: CFH rs1061147; 

C2 rs547154; LOC387715/ARMS2 rs3750847; C3 rs2230199; TIMP3 rs9621532 11,24-36. AMD risk in the 

reference population differed for males and females and was 6.5 and 7% respectively. Methods of risk 

calculation have been described in a white paper37, accessible after login to the 23andMe website. No 

health reports including risk prediction and carrier status are currently provided for new customers.

DeCODE

http://www.decodeme.com/

DeCODE was founded in 1996 and the headquarters are located in Reykjavik, Iceland. This company 

developed the deCODEme test, which provide results for 47 conditions and traits. Unfortunately, 

new tests are no longer offered by the company. Costs were $1100 per test, with no extra costs for 

shipping. After purchasing the test from the internet, a buccal swab kit will was sent in the mail with 

instructions how to collect and return the sample. The samples were processed at a CLIA certified 

lab, the deCODE laboratory in Reykjavik, for DNA isolation. Genotyping was performed on an 

Illumina Human 1M Beadchip (Illumina, Inc., San Diego, California, USA) which determines >1 million 

SNPs. Validation occurred by bi-directional Sanger sequencing and independent SNP genotyping 

platforms.

A overall RR for developing AMD was calculated based on six risk variants: ARMS2/HTRA1 rs3750847, 

C2/FB rs9332739 and rs547154, C3 rs230199 and, CFH rs1061147 and rs1329428 27,38. Subsequently, 

for the tested individual a lifetime risk was calculated based on the overall relative risk and the AMD 

risk in the reference population, which was set at 8%. A white paper39 describing the risk calculation 

is available after login to the deCODEme website.

Easy-DNA

http://www.easy-dna.com / http://www.easydna.co.uk / http://www.easydna.eu

Easy-DNA is an international company which provides a genetic DNA predisposition test on 25 

conditions and diseases. This test can be purchased from the internet for €299/$299/£299 including 

shipping costs. A kit will be sent by mail for collection of a blood sample, and includes submission 

forms, instructions for collecting the blood sample from a punctured finger, the sample collection 

kit and a self-addressed envelope. This company does not provide information on the genotyping 

method, but states that results are provided for CFH rs1061170 and C2 rs800292 40,41. Risk estimates 

are presented as lifetime and overall RR of AMD. Risk of AMD in the reference population was set at 

8%. Methods for risk calculation was not provided by the company.
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The Genetic Testing Laboratories, Inc (GTL)

http://www.gtldna.com/predisposition.html

This company provides a DNA predisposition test which will reveal the genetic and environmental 

predisposition for 25 diseases and conditions including AMD. The DNA predisposition test costs $285 

with additional costs of $45 for shipping outside the Contiguous United States. After purchasing the 

kit from the internet, it will be sent to your own physician or a professional collector agency appointed 

by GTL to collect the sample, which can be a bucal or a blood sample. The sample will be processed by 

a CLIA accredited laboratory. As for Easy-DNA, this company also is unclear on genotyping method, 

but states that results are provided for CFH rs1061170 and C2 rs800292 40,41. Lifetime and overall RR 

are provided for each tested person. Risk of AMD in the reference population was set at 8%.The risk 

calculation method of this company was not available for consumers or professionals.

We followed each company’s instructions for the collection of bio-samples used for DNA extraction. 

We sent the samples to the various laboratories associated with the companies, and awaited the 

results.

Genotyping in Rotterdam

Genotyping for the three individuals was also performed at the Rotterdam Study Laboratory: Genetic 

Laboratory of Internal Medicine at the Erasmus Medical Center in Rotterdam, the Netherlands. 

Genomic DNA was extracted from peripheral leukocytes and all participants were genotyped using 

the Illumina HumanOmniExpress 12v1_J microarray (Illumina, Inc., San Diego, California, USA). Call 

rate for the genotyping was >97.5%.We imputed genotype data to Hapmap 3 release 2 and 1000 

genomes phase I V3.

Assessment of covariates

The covariates age, length, weight, smoking status, and family history regarding AMD were obtained 

by interview. Body mass index (BMI) was calculated by dividing weight (kg) by the height squared 

(m2). AMD phenotype was evaluated by standard ophthalmologic examination including fundus 

photography (Topcon TRC-50EX fundus camera, Topcon Optical Co, Tokyo, Japan and Sony DXC-

950P digital camera, Sony Corporation, Tokyo, Japan) after pharmacological mydriasis. Images 

were graded according to the Wisconsin Age-Related Maculopathy Grading42 and the modified 

international classification system43 by graders from the Rotterdam Study.

Risk score Three Continent AMD Consortium prediction model and DTC-tests

The Three Continent AMD Consortium (3CC) developed a validated prediction model including a 

total risk score based on 31 variables; 26 genetic variants associated with AMD, age, sex, smoking, 

BMI, and AMD phenotype. The prediction model had 87% discriminative accuracy for incident late 

AMD 22. For each individual in this study this summary risk score was calculated. Based on the risk 

score, lifetime risks could be assessed for each individual.

Ancestry assessment

Ancestry of the three individuals was determined using multi-dimensional scaling (MDS) protocol 

from ENIGMA 44 using Hapmap 3 release 2 as the reference.
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Statistical analysis

Test results included predicted risks for several diseases from four companies. For the purpose of this 

study, we only evaluated the predicted risks for AMD. 23andMe provided odds ratios (OR) and the 

other companies relative risks (RR) per SNP per genotype, but all were adjusted for the average risk 

of the SNP in the population, and will be referred to as OR and RR, respectively. Genotype frequency, 

risks per genotype, overall RR, lifetime population risk and lifetime risk of the tested individual were 

obtained from the test results.

Minor allele frequencies were not provided by the companies, but calculated using the formula:

 p+q = 1

With p representing the major allele and q the minor allele. For the different genotypes, frequencies 

could be calculated after applying this information; homozygous for major alleles = p2, heterozygous 

= 2pq and homozygous for minor alleles = q2.

All analyses were performed using SPSS version 20.0 (SPSS INC, Chicago, Illinois) except for the MDS-

analysis which was performed using R software ( R-project, Institute for Statistics and Mathematics, R 

core team (2013), Vienna, Austria, version 3.0.2).

RESULTS

Demographic characteristics of the three study subjects are provided in Table 1. All three were 

younger than the average age of AMD onset, and none had any features of AMD, as determined by 

grading of fundus photographs. One had a history of smoking, and one had a positive family history 

for late AMD. All three were Caucasian and had northern/western European ancestry (Supplementary 

Figure 1).

TABLE 1 - Discriptives of the participants 

Variable Individual 1 Individual 2 Individual 3

Age (yrs) 45 29 51

Sexe Female Female Male

Ethnicity Caucasian Caucasian Caucasian

Ancestry Northern/western European Northern/western European Northern/western European

BMI (kg/m²) 22.7 20.2 24.3

Smoking never never past

AMD phenotype none none none

Family history of AMD grandmother none none

Abbreviations: AMD = age-related macular degeneration, BMI = body mass index, yrs = years
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DTC-tests

Details of the DTC-tests are given in Table 2. Tests differed considerably in price, the most costly being 

11x more expensive than the cheapest test. Sampling methods varied from saliva, buccal swap to 

blood from a finger prick. One participant particularly had difficulty to deliver the saliva specimen 

of 2.5 ml for 23andMe, which required ~1 hour of sampling time. Genetic Testing Laboratories 

(GTL) required for all participants and Easy-DNA only for US-residents a physician or another health 

professional assigned by the company to collect the blood sample and only the collectors obtained 

the test results. However, the forms for requesting the test from GTL were open access. Delivery time 

for test results ranged from 2-4 weeks for most tests; results from one Easy-DNA test were delayed up 

to 8 weeks without notice or explanation.

TABLE 2 - Overview genetic testing companies

Company 

name Website

Costs 

per kit

DNA 

source

Easy to 

collect? Additional notes

23andMe https://www.23andme.com $99 /

€ 74

saliva Difficult in one 

participant

Street address is needed to 

deliver DTC-test

deCODEme* https://www.decodeme.com $1100 /

€ 821

bucal yes  - 

Easy-DNA http://www.easygenetictest.com $299 /

€ 299

blood yes For US residents: Sample needs 

to be collected by physiscian or 

professional collector

The Genetic 

Testing 

Laboratories

http://www.gtldna.com/ $285 /

€ 213

blood yes Sample needs to be collected 

by physiscian or professional 

collector

* deCODEme do not offer any new testing possibilities

In contrast to the statement of Easy-DNA and GTL, the SNP rs800292 is located in the CFH gene, 

not in C2 (Table 3). Thus, these two companies only tested risk variants in CFH. DeCODEme and 

23andMe covered 4 and 5 AMD loci, respectively. The tested SNPs varied among tests, however, there 

was considerable overlap. Individual genotypes at these SNP locations are shown in Table 3. Risk-

increasing as well as risk-decreasing variants were present in all three individuals. The effect estimates 

of these variants showed the largest range in individual 2, in particular for the risks predicted by 

23andMe and deCODEme. The lifetime AMD population risk used by the companies varied from 6.5-

8%, and varied for gender in the 23andMe calculations. For 23andMe and deCODEme the ancestry 

of the reference populations was European, for GTL and Easy-DNA this was European Tuscan. Only 

for individual 1 the Easy-DNA test listed European ancestry as the reference population. Genotypes 

identified by the DTC-tests were identical to those determined at the Rotterdam Study laboratory in 

all three individuals.

The inter-test variability of the overall relative and life-time risks was large in all three individuals , but 

most profoundly in individual 3 (Table 3). For this person, these risks were lower and higher than the 

population risk, depending on the test. Lifetime risks between lowest and highest estimate differed 

by factor 1.7, 1.6, and 11.5 for individuals 1, 2, and 3, respectively.
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TABLE 4 - Risk estimates from the Three Continent AMD Consortium prediction model

Variable Code Risk per code Individual 1 Individual 2 Individual 3

ARMS2 rs10490924 GG=0 / GT=1 / TT=2 0 / 0.779 / 1.720 0 0.779 0

ADAMTS9 rs6795735 CC=0 / TC=1 / TT=2 0 / 0.130 / 0.424 0 0.424 0.424

SLC16A8 rs8135665 CC=0 / TC=1 / TT=2 0 / 0.313 / 0.648 0.313 0 0.313

Sexe M=0 / F=1 0 / 0.320 0.320 0.320 0

CETP rs3764261 CC=0 / CA=1 / AA=2 0 / 0.215 / 0.478 0.215 0 0

CFH rs1061170 TT=0 / TC=1 / CC=2 0 / 0.175 / 0.278 0.175 0 0.175

Smoking Never=0 / Past=1 / Current=2 0 / 0.164 / 0.651 0 0 0.164

MYRIP rs2679798 AA=0 / AG=1 / GG=2 0 / 0.059 / 0.156 0.059 0.156 0

VEGFA rs943080 CC=0 / TC=1 / TT=2 0 / 0 / 0.098 0 0 0.098

TNFRSF10A rs13278062 TT=0 / TG=1 / GG=2 0 / 0.093 / 0.196 0.093 0 0

TGBR1 rs334353 TT=0 / TG=1 / GG=2 0 / 0.039 / -0.336 0.039 0.039 0

IER3/DDR1 rs3130783 AA=0 / AG=1 / GG=2 0 / 0.029 / 0.166 0 0.029 0.029

SKIV2L rs429608 GG=0 / GA=1 / AA=2 0 / 0.027 / 0.590 0 0 0.027

Age (yrs) =<65=0 / 65-75=1 / 75+=2 0 / 1.558 / 2.433 0 0 0

AMD baseline grade Level 10=0 / Level 20=1 / 

Level 30=2 / Level 40=3

0 / 1.458 / 2.560 

/ 3.398

0 0 0

BMI (kg/m2) =<25=0 / 25+=1 0 / 0.007 0 0 0

C2/CFB rs4151667 TT=0 / TA or AA=1 0 / -1.245 0 0 0

B3GALTL rs9542236 TT=0 / TC=1 / CC=2 0 / -0.231 / -0.169 0 0 0

LIPC rs12912415 AA=0 / AG or GG=1 0 / -0.098 0 0 0

COL8A1 rs13081855 GG=0 / GT=1 / TT=2 0 / 0.223 / 0.890 0 0 0

TIMP3 rs5749482 GG=0 / GC or CC=1 0 / -0.357 0 0 0

C3 rs2230199 CC=0 / GC=1 / GG=2 0 / -0.033 / 0.755 -0.033 -0.033 0

ABCA1 rs1883025 CC=0 / TC=1 / TT=2 0 / -0.046 / 0.076 -0.046 -0.046 0

LPL rs256 CC=0 / TC or TT=1 0 / -0.048 0 -0.048 -0.048

CFI rs10033900 CC=0 / TC=1 / TT=2 0 / -0.070 / -0.223 0 -0.070 -0.070

C3 rs433594 GG=0 / GA=1 / AA=2 0 / -0.110 / -0.591 -0.110 -0.110 0

FRK/COL10A1 rs3812111 TT=0 / TA=1 / AA=2 0 / -0.278 / -0.118 0 0 -0.118

RAD51B rs8017304 AA=0 / AG=1 / GG=2 0 / -0.414 / -0.138 0 0 -0.414

C2/CFB rs641153 GG=0 / GA or AA=1 0 / -0.592 0 0 -0.592

CFH rs800292 GG=0 / GA=1 / AA=2 0 / -0.899 / -1.614 0 -0.899 -0.899

CFH rs12144939 GG=0 / GT=1 / TT=2 0 / -0.947 / -1.195 0 -0.947 0

Total risk score     1.025 -0.406 -0.911

Lifetime risk (%)     4.2 0.5 0.5

Abbreviations: AMD = age-related macular degeneration; BMI = body mass index; F = female; M= male; yrs = years
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Risk prediction based on Three Continent AMD Consortium

The prediction model developed by the population-based Three Continent AMD Consortium (3CC) 

consists of 31 variables which were represented in a total risk score indicating the risk of developing 

late AMD22. For each individual the total risk score was calculated (Table 4) and used to assess lifetime 

risks. Lifetime population risk for developing late AMD was 17.4% at life expectancy of 90 years in the 

3CC cohort. Lifetime risks for all three individuals were also calculated using the 3CC risk score, and 

were 4.2%, 0.5%, and 0.5% respectively (Table 4). Although the population risk in the 3CC cohort was 

much higher than for the DTC-tests, lifetime risks for the three individuals were considerably lower 

than the lifetime risks provided by the companies (4.9-8.6; 4.0-6.5; 1.4-16.1, Table 3).

DISCUSSION

Until recently, anyone could order a DTC-test and get a personal risk estimate for common diseases. 

Interpretation of the test results and evaluation of their validity has been difficult, even for 

professionals. Our study shows that predicted risks of AMD vary considerably among DTC-tests, and 

none may represent the true disease risk.

We examined four DTC-tests in three individuals, and compared test results to predicted risks from a 

validated model developed in the large population-based Three Continent AMD Consortium (3CC)22. 

Predicted risks varied widely within each individual, and differences between highest and lowest 

estimates for lifetime risk were up to 12-fold. Within the same person, overall relative risks could 

be increased as well as decreased, depending on which test was used. All tests provided higher 

estimates for lifetime risk than the 3CC model. Several key points explain these differences.

First, the DTC-tests genotyped only 2-6 SNPs to calculate the risk of AMD. These risks were often 

based on case-control studies instead of population-based studies which often comprise lower 

risks22. Recent reports show that >30 loci have been associated by GWAS studies1,2. Not testing a 

comprehensive set of SNPs may lead to imbalance of harmful and protective SNPs, and provide a very 

different overall risk estimate. For example, individual 2 had several important risk-increasing as well 

as risk-decreasing variants (Table 4), and not testing these hampered accurate risk profiling (Table 

3). This was also acknowledged for the population at large; inclusion of an extended set of variants 

increased risk prediction in three population-based studies22. We expect that even more common 

and rare variants will be identified for AMD in the near future, and inclusion of these variants will 

further refine personalized risk prediction.

Second, the lifetime population risk and reference population differed among the DTC-tests. The 

lifetime population risk used by 23andMe was lower than that used by the other companies, and 

differed for men and women. Which population had been used as reference for the calculation of the 

lifetime AMD population risk was not specified by any of the companies. They were all lower than 

the lifetime population risk estimate in 3CC (6.5-8% versus 17.4%, respectively). Lifetime population 

risks were based on life expectancy of 79 years for 23andMe and 90 years for 3CC. No information 

was provided on life expectancy by the other companies. The average life expectancy is currently 

above 80 years in western Europe and 79 years in the United States 45. Life expectancy increases 

once a certain age has been reached: for instance, persons who reached the age of 80 years during 

2008-2010 in France still had an average life expectancy of 8.3 years for men and 10.6 years for 

women 46. In these persons, a life expectancy of 90 years is not unrealistic. Ancestry also influences 

the risk estimates. All companies asked the applicant for their ethnicity and used questionnaire 

data for analysis. However, calculation of ancestry is more accurate using multi-dimensional scaling 
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(MDS) analysis with genotype data. In GTL and Easy DNA, all results were based on European Tuscan 

ancestry, although European ethnicity was stated by the individuals at application. MDS analysis 

with genotype data from all three individuals confirmed their northern/western European ancestry 

comparable with their appearance (Supplementary Figure 1). Why a Tuscan ancestry was chosen for 

these individuals is unclear and incorrect. The choice of two different ancestries (European Tuscan 

and European) in one individual (Table 3) in these tests is presumably an unintended error.

The conversion to a different ancestry can lead to an alteration of the risk, since the frequency of 

genotypes may differ among ethnicities. The minor allele frequency (MAF) for the CFH rs1061170 

variant in the Easy-DNA and GTL tests was set at 17% for those with Tuscan ancestry. MAF for this 

variant varies among ethnicities: ~36% in Europeans and Africans, ~17% in Latinos/Hispanics and 

~10-15% in Asians47. Tuscans cluster more closely with northern/western Europeans than with 

Latinos/Hispanics (Supplementary Figure 1), and literature indicates that the actual MAF of the CFH 

rs1061170 variant in an Italian population is also 36%48. Therefore, these companies should have used 

a MAF of 36% rather than 17% for European Tuscans. Not using the correct MAF resulted in higher 

risks since all risks per SNP have been adjusted for the average risk of the SNP in the population, which 

can be calculated using the risk per genotype and genotype frequency. This effect is particularly 

visible in the risks for individual 1 (Table 3); risks provided by Easy-DNA used the European ancestry 

as reference population and a MAF of 36% resulting in an RR of 1.26, while GTL used the European 

Tuscan ancestry with a MAF of 17% resulting in a higher RR of 1.60. For carriers of the CFH rs1061170 

CC-genotype this difference in risk will be even more extreme. In summary, an incorrect reference 

population was assigned to the three individuals and to this reference population (Tuscans) an 

incorrect MAF for the CFH rs1061170 SNP was assigned. In this particular case the largest effect on 

risk prediction of AMD was the incorrect assigned MAF. This most likely influenced the risk prediction 

for the other diseases predicted by the companies as well.

Third, there were mistakes in assignment of an AMD risk variant. Easy-DNA and GTL stated that the 

tested SNP rs800292 was located in the C2 gene, when in fact this particular rs-number is located in 

the CFH gene49. Apart from the incorrect gene, the direction of the risk for this variant was opposite 

of that reported in 3CC22; in the tests from Easy-DNA and GTL the T allele was set as the risk variant, 

increasing the risk of AMD, while in 3CC this allele decreased the risk of AMD.

Fourth, the DTC-tests lacked inclusion of non-genetic risk factors. Only 23andMe took age and gender 

into account in their risk calculation. Age is the most important non-genetic factor associated with 

AMD known to date, and it is therefore prudent to incorporate this factor in risk predictions of AMD 50. 

None of the companies included environmental factors in their risk prediction. We recommend 

inclusion of smoking since this factor is an important environmental risk factor for AMD51, which also 

shows interaction with genetic risk variants40. Inclusion of non-genetic risk factors can improve the 

predictive ability of the test22.

Lastly, the companies applied different methods for their risk calculation. A recent study examined 

and compared the methods from three DTC-tests (23andMe, deCODEme and Navigenics) for several 

diseases including AMD23. The authors showed that the formulas used by deCODEme can lead to a 

predicted risk exceeding 100% in high risk cases. The formulas used by 23andMe followed the Bayes’ 

theorem preventing risks to exceed 100%, leading to more realistic risk estimates. Unfortunately, 

methods for risk calculation were not provided by Easy-DNA or GTL, and could therefore not be 

evaluated.
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Recently, many companies stopped offering DTC-tests. Several issues played a role. First, the 

Food and Drug Administration (FDA) questioned the evidence of the safety and efficacy of these 

prediction tests52. Second, it was unclear what actions the individual will take when made aware 

of his/her genetic profile. Third, health care professionals lacked guidelines for counselling and 

patient management after genetic profiling. Do these issues apply to DTC-tests for AMD? Our 

study encountered no genotyping errors. Nevertheless, predictions were inaccurate based on 

methodology. It is indeed unclear what an individual should do when diagnosed with a high genetic 

risk of AMD, and what a clinician should advise such patients. Cessation of smoking and lowering 

BMI is advice which applies to all persons. However, it is likely that individuals who have been made 

aware of a high genetic risk after testing will be more motivated to make drastic life style changes 

than persons who are ignorant.

Although genetic testing for prediction of disease risk is the next step to personalized medicine, the 

current state of the art is that most DTC-tests are accurate at genotyping, but not at risk prediction. 

Improvement can be achieved by incorporation of a more comprehensive set of genetic markers 

with population-based risks. Inclusion of non-genetic risk factors, a more adequate choice of the 

reference population, and implementation of valid methodology for risk calculation will further 

improve these tests. Only then will these genetic tests become suitable for clinical practice.
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General discussion
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The aim of this thesis was to expand our genetic and epidemiological knowledge of age-related 

macular degeneration (AMD), in order to gain more comprehension of the pathogenesis of AMD. 

This general discussion will summarize and review the most important findings described in this 

thesis and their clinical relevance, discuss methodological considerations, and provide suggestions 

for future research.

MAIN FINDINGS AND CLINICAL RELEVANCE

Burden of AMD

Although the prevalence of AMD in the Western World has been studied extensively in large studies,1,2 

estimates in Europe were based on single studies and a clear overview for Europe was lacking.3 Thus 

far, only a few small studies have described the prevalence of AMD in Europe and its’ relation to visual 

decline.4-6 We therefore investigated the prevalence of AMD over two decades in Europe in Chapter 2.1 

and observed a decreasing prevalence of AMD after the year 2006. This was also seen in other 

studies7,8 and is most likely due to increase of awareness9 and improved lifestyle in the elderly.10,11 

However, the projections we made for the year 2040 indicate that, although age-specific prevalences 

may be decreasing, that the actual number of affected persons with AMD will increase due to the 

aging population, resulting in more affected elderly in Europe than residents currently living in the 

Netherlands.

In Chapter 2.2 we have shown that AMD is the major cause of visual impairment and blindness in an 

elderly population. Visually impaired persons, due to AMD, experience a significantly reduced quality 

of life.12 For society, both visual impairment and blindness cause a considerable economic burden.13 

Annual expenses are inversely correlated with visual acuity; for blind patients costs are almost two-

fold the costs for non-blind patients. Costs are even expected to increase due to the aging population. 

Even though, improved diagnostics and the introduction of anti-vascular endothelial growth factor 

(VEGF) therapy have most likely resulted in fewer visually impaired eyes,14 studies indicated that long 

term visual prognosis after anti-VEGF treatment often show substantial visual decline.15,16 However, 

all improvement in visual outcome, even for a short period, will decrease demands on healthcare and 

costs. Therefore, anti-VEGF therapy should still be continued, since it improves visual outcome on 

the short term.15,16 Our data indicates that AMD is still a major health problem and a more profound 

solution is needed, since long lasting effects of the current therapy is insufficient.

Environmental and phenotypical risk factors of AMD

Risk factors have been investigated to identify those at risk, predict disease outcome and help 

elucidate the complex pathogenesis of AMD. These factors can also be used for screening and 

modifiable factors may even alter disease onset and outcome. As stated in Chapter 1.1 many risk 

factors for AMD were known before the onset of this thesis. Yet, we were able to identify a new 

risk factor for AMD: thyroid hormone. Previous studies identified a positive relationship of thyroid 

medication use17,18 or self-reported hypothyroidism19 associated with a higher risk of AMD. However 

all of these studies were lacking laboratory assessment of thyroid function, and were therefore 

unable to investigate the true relationship. In this thesis we have shown that higher values of free 

thyroxine, even within the normal range, were associated with an increased risk of AMD and retinal 

pigment alterations (Chapter 4.3). Higher levels of free thyroxine can increase metabolism leading 

to oxidative stress, which plays an important role in the pathogenesis of AMD (Figure 1). 20,21 Our 

findings were partly confirmed by the Blue Mountains Eye study. They found a significant positive 

association of overt hyperthyroidism and 10-year incidence of AMD. No association was found for 
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hypothyroidism, but use of thyroxine medication was significantly associated with an increased risk 

of AMD. Both findings seem to be driven by higher free thyroxine levels. Unfortunately, no association 

was found for free thyroxine levels and incident AMD. However, the number of cases in their study 

was small, since data was only available for 5-year incidence of AMD.22 More studies are necessary to 

understand the exact role of thyroid hormone in the pathogenesis of AMD and maybe in the future 

thyroid hormone can be used as a biomarker for AMD.

An important modifiable risk factor is dietary intake. Several studies focusing on dietary intake and 

supplementation of nutrients have shown that in particular carotenoids, zinc, and omega-3 fatty 

acids were associated with a lower risk of AMD. These nutrients are mainly present in dark-leafy 

vegetables, yellow-orange vegetables and fruit, fortified cereal, meats and fatty-fish. (Chapter 4.1) 

Unclear was what the recommended minimum intake of these foods should be to obtain this 

protective effect. In this thesis we have shown that a diet including at least 200 grams of vegetables 

a day, 2 large pieces of fruit a day and 2 times fish per week is associated with a reduced risk of AMD. 

No significant association was found for the intake of grains or meats with AMD (Chapter 4.2). The 

beneficial effect from vegetables, fruit and fish intake on AMD is most likely due to carotenoids, in 

vegetables and fruit, and omega-3-fatty acids in fish. Higher intake of these nutrients could also reduce 

the overall risk of AMD in those with a high genetic risk (Chapter 5.3). Carotenoids, in specific lutein 

and zeaxanthin, are important for macular pigment. The macular pigment is highly concentrated 

with these carotenoids and offer protection to the retina by absorbing hazardous ionizing blue 

and ultraviolet light. Furthermore, it has antioxidant properties and has anti-inflammatory effects.23 

Polyunsaturated fatty acids, like omega-3-fatty acids, are one of the main components of the 

retina. They are highly present in the photoreceptor outer segments and improve fluidity of the 

photoreceptor membranes, resulting in faster response to stimulation. Additionally, omega-3-fatty 

acids may also protect against ischemia, and have antioxidant and anti-inflammatory properties.24 

Both oxidative stress and inflammation are part of the pathogenesis of AMD (Figure 1).20,21 Other 

modifiable risk factors associated with AMD are smoking and body mass index. Cardiovascular risk 

factors may be associated with AMD, although findings have been inconclusive.21,25

Regarding the modifiable risk factors, clinicians should advice patients at risk of AMD, for example 

those with a positive family history, to adopt a healthy life-style. This should include physical exercise, 

a diet with recommended intake of vegetables, fruit and fish, have a normal body mass-index and 

quit smoking, the latter if applicable.

Reticular pseudodrusen (RPD), also known as subretinal drusenoid deposits, have been identified 

as an important clinical risk factor for progression to late AMD. Those with RPD have a higher risk 

compared to other drusen types.26-28 Presence of RPD is often bilateral and the highest prevalence 

is found in late AMD cases.29 Identification of persons at high risk for late AMD can be important 

for patient management. Chapter 3.1 and 3.2 provide evidence that near-infrared imaging was 

the most sensitive for detection of RPD of the tested imaging modalities. Detection improved even 

further when multi-modal imaging was applied. We also found that RPD was associated with a 

different risk profile compared to soft indistinct drusen, another drusen type which coincide often 

with RPD. These findings indicate that RPD are distinct AMD entities.

In neovascular AMD, antiplatelet and anticoagulant (AP/AC) use may potentially worsen clinical 

outcomes, leading to more severe hemorrhages and increase fibrovascular scarring.30 A question 

often asked in the clinic is whether AP/AC therapy should be discontinued in patients with 

neovascular AMD. In Chapter 4.4 we show that the use of AP/AC therapy in patients with active 
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choroidal neovascularization is not associated with visual impairment, nor the presence of retinal 

hemorrhages. We could not find an association of AP/AC use with choroidal neovascularization 

(CNV) lesion size. For retinal foveal thickness a borderline significant association was found for 

aspirin use only. After the start of anti-VEGF medication no differences were observed between users 

and nonusers. In contrast, those using AP/AC medication did not have an increased risk of visual 

impairment and had a lower risk of retinal hemorrhages. Aspirin seemed to be the major driver of the 

beneficial effect of AP/AC in our study. Beside the well-known effect on platelet aggregation, aspirin 

has anti-oxidant properties, reduces inflammation and angiogenesis, and stimulates apoptosis.31 The 

anti-oxidant, anti-inflammatory and anti-angiogenic properties may explain the found protective 

effect. Our findings imply that patients with neovascular AMD can continue their prescribed use of 

AP/AC medication without negative effects on AMD outcome.

Genetic risk factors

Even before the start of genome-wide association studies (GWAS), it was known for many years 

that heritability was an important factor in AMD.32 Only after the start of GWAS identification of 

the disease-associated risk variants became possible. Several risk variants in thirteen genes have 

been associated with AMD, by single or small collaborations between studies (Chapter 5.1). The 

associated genes were part of the complement pathway (CFH, CFB/C2, C3, CFI), lipid related genes 

(APOE, LIPC, CETP), collagen related genes (COL8A1, COL10A1) and other genes (ARMS2, VEGFA, TIMP3, 

TNFRSF10A). The AMD gene consortium conducted a GWAS including ~17,100 advanced AMD cases 

and ~60,000 controls, and confirmed the previous associations and identified seven new loci (COL8A1-

FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9, B3GALTL) (Chapter 5.2). All nineteen risk 

variants were common and involved in complement activity, lipid metabolism, extracellular matrix 

remodeling and angiogenesis.

More recently, The AMD Gene Consortium published their results using exome chip data from 

~16,100 cases with intermediate or late AMD and ~17,800 controls.33 In total 52 independently 

associated variants in 34 loci were identified, of which 17 loci were replicated from the previously 

mentioned GWAS. The associated variants were mostly common, seven were rare variants. Four 

genes had a significant disease burden: CFH, CFI, TIMP3 and SLC16A8, indicating a causal role for these 

genes. Pathway analyses identified complement, collagen, lipid and extracellular matrix pathways to 

play a role in the pathogenesis of AMD. The heritability of AMD has been determined to be between 

65-70%.34,35 All identified risk variants to date explain approximately 27.2% of disease variability, of 

which 1.4% is contributed by rare variants. This means that approximately 40% of the heritability 

is not explained by the identified genes. The missing heritability might be explained by additional 

genetic variation36, gene-gene or gene-environment interactions.

Identification of risk factors has helped to understand more of the pathogenesis of AMD. This 

information can be used to develop future therapies, but also to identify those at high risk. In Figure 1, 

risk factors for AMD discussed in this this thesis have been incorporated to provide an overview of 

the pathogenesis of AMD.
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FIGURE 1 - Pathogenesis of AMD.

Simplified scheme of the pathogenesis of AMD. Black arrows are the steps in the pathogenesis, red arrow 

displays risk increasing factors, green arrow displays risk reducing factors. Dotted arrows indicate a potential 

relationship.
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Prediction of AMD

In Chapter 6.1 we have provided an overview of previous reported prediction models for late AMD. 

All of these models were based on a case-control study design, in which the extreme ends of disease 

are compared, while excluding the majority of the population with signs of early AMD. We developed 

a prediction model in the population-based Rotterdam Study and validated it in the Three Continent 

AMD Consortium. The full model included the variables: age, sex, smoking, body mass index, baseline 

AMD phenotype, and 26 common risk variants in genes associated with AMD. This model could 

distinguish those who will develop late AMD between those who will not, with an accuracy of 87%. 

Exclusion of variables led to a lower predictive value. Subsequently we showed that the cumulative 

risk of developing late AMD is approximately 17% at the age of 90 years. Using our prediction model, 

the cumulative risk for seven risk categories, ranged from zero to almost 66% at the age of 90 years. 

This indicates that a prediction test can help to identify those at high risk of late AMD.

Although published prediction models led to several web-based risk calculators for prediction of 

late AMD (http://caseyamdcalc.ohsu.edu37; http://www.myvisiontest.com/riskcalc2.php38; http://

www.sightrisk.com) and progression of AMD (www.seddonamdriskscore.org39), implementation in 

the clinic will be difficult, since most of these risk calculators need genetic data beside information 

on lifestyle and phenotypical factors. Currently, there is no easy accessible, inexpensive genetic test 

available for AMD, which tests all known associated genetic variants. There are, however, companies 

offering genetic tests for AMD, which can be purchased on the internet. We have tested the direct-to-

consumer personal genome tests for genotyping quality and accuracy of risk prediction of AMD in 

Chapter 6.2. The genotyping was of high quality, but the risk prediction was not accurate. Inclusion 

of more genetic and environmental risk factors for AMD will improve future tests. Interestingly, from 

the tested companies, one stopped offering genetic tests shortly after we had received our results, 

one offers raw genotype data only, and two companies are currently not offering any tests for AMD.

The costs of sequencing has dropped in a rapid pace over the past years. Sequencing of an entire 

genome, was approximately $10 million in 2007, and currently available for less than $1000.40,41 

Although lower costs for genetic testing will make it more available for clinical practice, cost-

effectiveness42, the possibility of secondary findings43, psychological and decision making risks, all 

need to be addressed before it can be applied for routine genetic testing in AMD as long as no cure 

is available.44

METHODOLOGICAL CONSIDERATIONS

Within this thesis, relevant methodological issues have been addressed in the discussion sections of 

each chapter. Here, we will discuss some general methods and issues we encountered.

Phenotyping issues

The studies described in this thesis have different outcomes, mostly: 1) late AMD, 2) early AMD, 3) any 

AMD, both late and early AMD combined. Late AMD is the visual threatening end-stage of the disease, 

due to a low prevalence in the general population, the power to investigate some associations has 

been challenging. Early AMD is mostly asymptomatic, but more frequently present in the general 

population compared to late AMD. However, several characteristics describe early AMD, leading to 

a large variation of phenotypes. A possibility to increase power is to collaborate with other studies, 

however phenotypical issues could reduce the power. For the collaboration with the Three Continent 

AMD Consortium we harmonized our classification to minimize differences in AMD definitions, which 
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was predominantly the case for early AMD.45 This resulted in a new 5-step AMD severity scale, which 

was used in Chapter 5.3, and 6.1. To increase power for analyses restricted to the Rotterdam Study, 

we mainly used the outcome any AMD.

Another phenotypical issue is improved detection of AMD lesions with multimodal imaging 

compared to color fundus photographs (CFP) only. Differences in detection may lead to changes in 

prevalence and incidence of AMD. For instance, in Chapter 3.1 and 3.2 we showed that detection of 

RPD was better using near-infrared imaging, and the best results were obtained using multi modal 

imaging. This also accounts for other AMD lesions.46-49 Nevertheless, CFP have been the golden 

standard for AMD grading in epidemiological studies, including the Rotterdam Study.50-52 Many new 

techniques have been developed and since 2007, when high resolution imaging was available,53 

imaging techniques like optical coherence tomography (OCT), near-infrared and auto fluorescence 

imaging, have been incorporated in the Rotterdam Study beside CFP. Unfortunately, a consensus for 

grading and classification of these pathologies using imaging other than CFP is lacking.

Genetics

Since the start of the GWAS era, thousands of genetic variants associated with complex diseases and 

traits have been identified successfully.54 However, these types of analyses have limitations: large 

sample sizes are mostly needed to increase the power to find associations. This requires collaborations 

between different studies and could introduce phenotypical and genetical heterogeneity, limiting 

the possibility to find associations. Furthermore, the found association is in most cases a marker 

in high linkage disequilibrium with the causal variant. Identification of the causal variant can be 

difficult due to many or no genes near the associated marker. Identification of the causal variants 

is necessary, since it helps to identify the true relationship with the disease and may provide a drug 

target. In Chapter 5.2 we identified 19 common variants associated with AMD using GWAS data 

from 33 different studies. The heterogeneity was high for some associations, and most likely due 

to differences in methodology and ancestry of study populations (Asian and European descent). 

Of the previously identified loci, 17 were replicated in the most recent study from the AMD gene 

consortium using genomic data from 26 different studies.33 Exome chip data was enriched for the 

previously identified loci and imputed with 1000 genomes data, to increase the chance of finding 

causal risk variants in protein-coding regions of the DNA, also known as the exome. All study samples 

were genotyped at the same facility, which led to a reduction of heterogeneity. The study using 

exome chip data was executed with a larger amount of variants, but with a lower number of cases 

and controls in comparison to the GWAS. Many new risk variants, including rare variants, were 

identified in the recent study, and explained more of the phenotypical variance. However, these 

newly identified variants were involved in largely the same pathways which were also identified in 

the GWAS and there is still missing heritability.

FUTURE DIRECTIONS

The studies described in this thesis have provided new insights in the pathogenesis of AMD. However, 

there are still many questions that can be answered by future studies.

As a start, identifying the missing heritability of AMD could help to understand the complete genetic 

architecture of AMD. Many genes involved in several pathways have been identified, but we are not 

there yet. For instance, it is unknown what the exact function of the ARMS2 gene is and which role 

it plays in the pathogenesis of AMD, although the risk variant in this gene has the most significant 

association of all common variants associated with AMD.33 Unidentified risk variants, gene-gene 
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and gene-environment interaction could help to understand the role of identified genes and 

identify the missing heritability of AMD. For identification of novel risk variants it is difficult to state 

which approach would be the most successful, since several strategies have been explored: Exome 

sequencing of families with AMD55,56 or patients with specific phenotypes,57 sequencing of previously 

associated genes,58-62 and the GWAS approach using large case-control samples for the outcomes 

early63 as well as late AMD.33 Enlargement of the study sample and whole genome sequencing might 

help to identify new risk variants for AMD.

Gene-gene or gene-environment interactions can modulate disease risk. In this thesis we have 

shown that intake of nutrients reduced the overall risk of individuals at high genetic risk based on 

gene-environment interactions (Chapter 5.3). In order to study multifactorial relationships between 

genes and environmental factors, collaboration between epidemiological studies is needed, since 

single studies are quickly outnumbered because of the many different strata in the analyses. Gene-

gene and gene-environment interactions can also be investigated in a genome-wide setting, 

so called genome-wide association gene-gene interaction and genome-wide environmental 

interaction studies. This, however, needs to be done in a large study setting with good quality of 

phenotyping and environmental data, since studies can be quickly underpowered due to countless 

possibilities of interaction combinations and misclassification may introduce bias.64,65

Newer fields of interest in AMD research have been epigenomics, transcriptomics, proteomics, 

and metabolomics. Like GWAS, omic studies are hypothesis-free, enabling association analyses at 

once in a large set of markers. Epigenomics focusses on heritable regulatory mechanisms of gene 

expression without changes in the DNA sequence. Transcriptomics conveys gene expression and 

noncoding RNAs like microRNAs, which are small RNA molecules that regulate gene expression 

after transcription. Proteomics focusses on peptides or proteins and in metabolomics derivatives 

of metabolism are measured and analyzed. Several small studies using these new techniques have 

published interesting results, however findings need to be replicated in independent studies.21,66 The 

most interesting of these new techniques are proteomics and metabolomics. These techniques may 

help to understand what is actually happening in a patient with AMD. Beside data acquired from 

plasma or serum, which is much easier to obtain from the patient, ocular tissue and fluids of patients 

with AMD in various stages of the disease are also necessary, since these are closer to the location 

of the disease. Proteomics and metabolomics may help to identify potential biomarkers, find new 

pathways and link current pathways together. Epigenomics and transcriptomics are also interesting, 

but might be of more interest in a later stage, when more of the pathogenesis of AMD is understood. 

These techniques focus on regulatory mechanisms and may help to understand for example the 

influence of environmental factors on gene expression.

Many different imaging techniques of the posterior pole are available and improvement of current 

and development of newer techniques is ongoing. For example in OCT imaging many different 

methods have been developed, and the latest is OCT angiography.67 This provides a non-invasive 

technique for visualization of functional blood vessels in the eye and is potentially interesting for 

neovascular AMD. However, as stated earlier, a consensus for grading and classification of imaging 

other than CFP is lacking. Currently, we are working on a consensus for OCT grading of macular 

diseases within the E3 consortium.

Manual grading of images is time-consuming, which is one of the reasons that automatic grading 

with machine learning algorithms have been developed for different image modalities.68-71 This 

field is still under development and the predictive power of the machine learning algorithms 
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depend on the size and quality of the dataset.69 Consensus of grading and classification, together 

with collaboration of studies with imaging, may result in large high quality datasets, leading to 

improvement of the algorithms. Automatic grading is especially interesting for screening purposes, 

which has successfully been used for detection of diabetic retinopathy.70 Early detection of AMD 

in persons without any symptoms, may identify those at risk of late AMD, increase awareness and 

lead to positive life-style changes. Another opportunity for machine learning is development of 

prediction models. Currently there models available for prediction of drusen regression72, which is 

associated with development of late AMD, and prediction of anti-VEGF treatment needs73, which 

may help to determine individual treatment intervals. When these prediction models will become 

available for clinical application, this can lead to a substantial improvement of AMD management.

Systems biology can help to link all the pieces together. It is a powerful computational and 

mathematical method of modeling complex diseases to comprehend complex interactions within 

biological systems. For example, in systems biology data on phenome, genome, epigenome, 

transcriptome, proteome, interactome, and metabolome can be integrated to assemble models and 

pathways, which can help explain the pathogenesis of AMD.74

The ultimate goal is to identify patients at an early stage, obtain insights in individual risk profiles and 

how to modulate these, monitor progression of the disease, and measure treatment response, all 

with a simple test. However, before this test will have added value, there is need for better treatment 

options. Understanding the pathogenesis of AMD will help to provide drug targets and understand 

how to prevent progression to visual threatening late AMD.

Currently, many ongoing trials are investigating different therapeutic options.75-78 For neovascular 

AMD the main focus is to decrease treatment burden. Implants providing constant release of 

anti-VEGF are being tested. New anti-VEGF agents have been developed, but also anti-platelet 

derived growth factor and anti-angiopoietin agents are interesting therapies, because of their anti-

angiogenic effect. These new agents are mostly tested in combination with anti-VEGF therapy. Gene 

therapy might be another option to reduce treatment burden. A viral vector containing the code for 

the VEGF receptor is administered via subretinal injections and then expressed by the host retinal 

cells. This reduces the effect of VEGF in the eye with a longer duration compared to current treatment 

with anti-VEGF.

Since no treatment options have been available for geographic atrophy (GA) or early AMD, many 

trials have been focusing on this type of AMD with the main goal of preservation of vision. Ongoing 

trials can be divided in five categories: 1) neuroprotective agents, 2) anti-inflammatory agents, 3) 

lipofuscin and visual cycle inhibitors, 4) choroidal blood flow restoration agents, 5) stem cell therapy. 

Most of these trials have completed phase I or II and a few started phase III. The first results of most 

of these trials have been promising, in particular for stem cell therapy. Human embryonic stem cells 

were injected in the subretinal area, which improved visual acuity in the injected eyes of patients 

with geographic atrophy.79,80 However, larger studies with follow-up measurements are needed 

before some of these therapeutic options will be used as a treatment for AMD.

The latest results of the phase III trial investigating the safety and efficacy of lampalizumab, which 

is an antibody selectively inhibiting complement factor D, was less promising.81 The first results 

did not show a difference in mean GA lesion area in comparison to the sham injection. The target, 

complement factor D, was chosen carefully: genetic studies have indicated that the complement 

system, in particular the alternative pathway in which factor D plays a role, is involved in the 

pathogenesis of AMD. It could be that once geographic atrophy starts to develop, there is no way 
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back. A recent study observed that before GA is visible, small disruptions of the retinal anatomy occur, 

which are best visualized on OCT.49 These disruptions include subsidence of the outer plexiform and 

inner nuclear layers, while the retinal pigment epithelium is still intact. This stage is named nascent 

GA and eventually will result in loss of photoreceptor and retinal pigment epithelial cells, which are 

characteristics of GA. Thus, treatments targeting the complement system might have more success 

when tested in patients with early signs of AMD, since the complement system plays a major role in 

drusen formation.82 Nevertheless, patients with early AMD are mostly asymptomatic, but at risk of 

visual threatening end stage disease. Whether these patients should be treated or not is a difficult 

discussion. As a start, future studies focusing on treatment of early AMD could start with those at 

high risk of developing late AMD.

CONCLUDING REMARKS

AMD is a chronic complex disease and still the leading cause of blindness in the Western World. 

In this thesis we have identified genetic variants associated with AMD through an international 

collaboration of studies, which have helped to elucidate a large part of the genetic architecture 

of AMD. Furthermore, we have investigated environmental risk factors and gene-environment 

interactions, using large well-designed longitudinal studies for which we harmonized our 

methodology and grading protocols. Combining these risk factors in a prediction model offered a 

good method to distinguish between those who will develop late AMD and those who will not. 

These findings can help future studies to further unravel the pathogenesis of AMD and ultimately 

develop preventative measures for this blinding disease.
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SUMMARY 

Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in 

elderly in the Western world. AMD is characterized by drusen, pigmentary changes, geographic 

atrophy and choroidal neovascularization, which affect the normal anatomy of the macula. Early 

AMD is characterized by the first two features, and late AMD by the latter two. Although several 

demographic, genetic, and environmental risk factors have been identified, the etiology of AMD is 

still largely unknown.

The main objectives described in this theses were: 1) assess frequency and impact of AMD, 2) 

evaluate the merit of new imaging techniques for diagnosis and risk assessment, 3) identify new 

environmental risk factors for AMD, 4) investigate genetic associations and gene-environmental 

interactions, 5) assess predictive value of risk factors associated with AMD.

Our study population included the population-based Rotterdam Study, population-based studies 

from the Three Continent AMD Consortium and from the European Eye Epidemiology (E3) 

Consortium, double blind randomized-controlled multicenter trial BRAMD study, and population-

based and case-control studies from the AMD Gene Consortium.

Chapter 1 provides a general introduction to AMD and describes the main aims of this thesis. 

Chapter 2 discusses the frequency and impact of AMD. In Chapter 2.1 we investigated the 

prevalence of AMD in Europe over the past two decades using 14 population-based studies from the 

E3 Consortium. The frequency of AMD increases with age; overall prevalence of early AMD and late 

AMD was 13.2% and 3.0%, respectively, in those aged 70 years and older. We observed a decreasing 

age-specific prevalence of late AMD. We also observed a decreasing number of visually impaired 

eyes and persons due to choroidal neovascularization after 2006, most likely due to improved 

diagnostic procedures and introduction of anti-vascular endothelial growth factor therapy. We also 

made projections for the year 2040, and predicted that the actual numbers of affected persons will 

still increase. Europe will reside more affected elderly persons, than residents currently living in 

the Netherlands. In Chapter 2.2 we studied the causes of blindness and low vision in relation to 

refractive error using the Rotterdam Study data. We found that the major cause of visual impairment 

in all refractive categories, except for high myopia (spherical equivalent ≤ -6D), was AMD.

In Chapter 3, we explored diagnostic properties for detection of reticular pseudodrusen (RPD) in 

AMD using different imaging techniques and investigated the risk profiles of RPD in a population-

based setting. In Chapter 3.1, we describe the epidemiology of RPD in the Rotterdam Study. We 

showed that detection of RPD was better on near-infrared imaging than on color fundus photographs. 

Subsequently, we assessed demographic, environmental, and genetic risk factors for RPD versus soft 

indistinct drusen, since these drusen types coincide frequently. Several demographic and several 

genetic (ARMS2, C3, VEGFA) risk factors were more associated with RPD than soft indistinct drusen. 

Indicating that these features are distinct AMD entities. Chapter 3.2 proposes an automatic system 

for RPD quantification, which showed similar performance of RPD detection as human graders. The 

study also indicated that multimodal imaging improves detection of RPD for both automatic as 

human grading.

In Chapter 4, we explored risk factors for AMD. We provided an overview of investigated nutrients 

and their associations with AMD in Chapter 4.1. In particular carotenoids, zinc and omega-3 fatty 

acids were associated with a reduced risk of AMD. Diet recommendations from the Dutch food center 

were studied in Chapter 4.2, using data from the Rotterdam Study. Recommended intake of at least 
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200 grams of vegetables a day, 2 large pieces of fruit a day and 2 times fish per week, was associated 

with a reduced the risk of AMD of 42%. However, only 3.5% of the studied population met these 

recommendations. Chapter 4.3 shows that higher values of free thyroxine, even within the normal 

range, are associated with an increased risk of AMD and retinal pigmentary alterations in the macula, 

suggesting a role for thyroid hormone in the pathway of AMD. Chapter 4.4 shows that in the double 

blind randomized-controlled multicenter trial BRAMD study, usage of antiplatelet or anticoagulant 

drugs in active choroidal neovascular AMD did not negatively affect visual outcome, nor presence of 

retinal/subretinal hemorrhages, lesions size, or retinal thickness. From our study, we concluded that 

continuation of antiplatelet or anticoagulant therapy in patients with active choroidal neovascular 

AMD is not contraindicated.

Chapter 5 focusses on genetic risk factors and gene-environment interactions in AMD. Chapter 5.1 

discusses the knowledge about the genetic background of AMD. Most of the genetic risk of AMD can 

be explained by two genes, CFH and ARMS2. In Chapter 5.2, seven new loci for AMD were identified, 

using a large-scale genome wide association study meta-analysis, which was established in the AMD 

Gene consortium. These loci were located near the genes: COL8A1, IER3-DDR1, SLC16A8, TGFBR1, 

RAD51B, ADAMTS9 and B3GALTL, which are involved in complement activity, lipid metabolism, 

extracellular matrix remodeling and angiogenesis. Chapter 5.3 shows that higher intake of lutein 

and zeaxanthin, and weekly consumption of fish, could reduce the overall risk of AMD in individuals 

with a high genetic risk, based on two or more risk variants in major AMD genes (CFH, ARMS2). This 

was observed in two population based studies from the Three Continent AMD Consortium. These 

findings can enable personalized preventive interventions.

In Chapter 6, we discuss prediction and personal genome testing. In Chapter 6.1 we studied the 

predictive value of various prediction models based on demographic, genetic and environmental 

data in the Rotterdam study, and validated this in the Three Continent AMD Consortium. We 

found that the full model, including age, sex, 26 single nucleotide polymorphisms in AMD risk 

genes, smoking, body mass index and baseline AMD phenotype had the best predictive value. The 

prediction model could distinguish between those who will develop late AMD and those who will 

not with an accuracy of 87%. In Chapter 6.2 we tested direct-to-consumer personal genome tests 

available on the internet. Although the genotyping was of a high quality, these tests appeared not 

yet suitable for clinical application, as risk prediction was not accurate. Inclusion of more genetic and 

environmental risk factors for AMD will improve future tests.

Lastly, Chapter 7 provides a general interpretation and implication of these main findings. This 

chapter also addresses methodological considerations, clinical implications, and suggestions for 

future research.

To conclude, the studies described in this thesis have investigated several aspects of AMD. We have 

identified new genetic variants and risk factors, which may lead to new insights in the complex 

pathogenesis of AMD, and eventually to new directions for treatment and/or preventive measures.
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Leeftijdsgebonden maculadegeneratie (LMD) is de meest voorkomende oorzaak van slechtziendheid 

bij ouderen in de Westerse Wereld. LMD wordt gekenmerkt door drusen, pigment veranderingen, 

verdunning van het netvlies (geografische atrofie) en vorming van nieuwe bloedvaten (choroïdale 

neovascularisaties) waardoor de normale anatomie van de macula verloren gaat. De eerste twee 

kenmerken zijn de karakteristieken voor vroege LMD en de laatste twee voor late LMD. Hoewel er 

meerdere demografische, genetische en omgevingsfactoren gevonden zijn die een rol spelen in het 

ontstaan van LMD, is de etiologie van LMD nog steeds grotendeels onbekend.

De belangrijkste vragen die dit proefschrift beoogt te beantwoorden waren: 1) Hoe vaak komt LMD 

voor en wat zijn de gevolgen hiervan? 2) Welke nieuwe beeldvormende technieken zijn nuttig 

voor de diagnostiek van LMD? 3) Welke nog onbekende omgevingsfactoren spelen een rol in het 

ontstaan van LMD? 4) Welke genetisch en gen-omgevingsfactoren veroorzaken LMD? 5) Hoe goed 

kunnen reeds bekende risicofactoren LMD voorspellen?

Onze studiepopulatie bestond uit het Erasmus Rotterdam Gezondheid Onderzoek (ERGO, ook wel 

Rotterdam Studie genoemd), bevolkingsonderzoeken van het Three Continent AMD Consortium 

en van het European Eye Epidemiology (E3) Consortium, de BRAMD studie, een dubbelblinde 

gerandomiseerde gecontroleerde trial, en bevolkingsonderzoeken, patiënt-controle en patiënt 

studies van het AMD Gene Consortium.

Hoofdstuk 1 geeft een algemene introductie over LMD. Hoofdstuk 2 geeft weer hoe vaak 

LMD voorkomt en wat de gevolgen hiervan zijn. In Hoofdstuk 2.1 hebben we onderzocht hoe 

vaak LMD voorkomt in Europa in de laatste twee decennia. Hiervoor hebben we data van 14 

bevolkingsonderzoeken van het E3 Consortium gebruikt. De frequentie van LMD neemt toe met de 

leeftijd; in deelnemers van 70 jaar en ouder bleek 13.2% vroege LMD en 3.0% late LMD te hebben. 

Verder vonden wij dat de leeftijdsspecifieke frequentie van late LMD afnam na het jaar 2006. Ook 

bleek het aantal blinde en slechtziende ogen door choroïdale neovascularisaties af genomen te 

zijn, waarschijnlijk door verbeterde diagnostische technieken en introductie van anti-vasculaire 

endotheliale groeifactor, een behandeling tegen bloedvat nieuwvormingen in het netvlies. Ondanks 

deze dalende frequentie laten de projecties voor het jaar 2040 zien dat het werkelijke aantal 

aangedane personen zal toenemen. Dit betekent dat het totale aantal aangedane ouderen door 

LMD in Europa, het aantal inwoners van Nederland zal overschrijden. In Hoofdstuk 2.2 hebben we 

de oorzaken van blindheid en slechtziendheid in relatie tot refractieafwijkingen bestudeerd binnen 

het ERGO onderzoek. We vonden dat de belangrijkste oorzaak van blindheid en slechtziendheid LMD 

was. Dit was onafhankelijk van refractieafwijkingen, met uitzondering van hoge myopie (sferisch 

equivalent van -6 D of meer) waar myope maculadegeneratie de belangrijkste oorzaak was.

In Hoofdstuk 3 hebben we naar verschillende aspecten van beeldvormende technieken voor het 

diagnosticeren van reticulaire pseudodrusen (RPD) gekeken en onderzochten de risicoprofielen van 

RPD in kader van LMD. In Hoofdstuk 3.1 beschrijven we de epidemiologie van RPD in het ERGO 

onderzoek. We hebben aangetoond dat detectie van RPD beter was op nabij-infraroodbeelden dan 

op kleurenfundusfoto's. Vervolgens hebben we demografische, genetische en omgevingsfactoren 

voor RPD versus zachte drusen geanalyseerd, aangezien deze soorten drusen vaak samen voorkomen. 

Demografische factoren (leeftijd en geslacht) en verschillende genetische factoren (ARMS2, C3, 

VEGFA) waren meer geassocieerd met RPD dan met zachte drusen. Deze bevindingen suggereren 

dat RPD een op zichzelf staande entiteit is binnen LMD. Hoofdstuk 3.2 beschrijft automatische 
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kwantificatie van RPD, die evengoed als humane gradeerders de aanwezigheid van RPD vast stelt. 

Verder komt uit deze studie voort, dat multimodale beeldvorming de detectie van RPD, voor zowel 

automatische als humane gradering verbetert.

In Hoofdstuk 4 hebben we risicofactoren voor LMD onderzocht. We hebben een overzicht gegeven 

van de verschillende voedingsstoffen die bestudeerd zijn in relatie tot LMD in Hoofdstuk 4.1. Met 

name carotenoïden, zink en omega-3 vetzuren waren geassocieerd met een lager risico van LMD. 

Dieetaanbevelingen van het voedingscentrum zijn onderzocht in Hoofdstuk 4.2, met behulp van 

het ERGO onderzoek. Er werd aangetoond dat de aanbevolen inname van tenminste 200 gram 

groenten per dag, 2 grote stukken fruit per dag en 2 keer per week vis, het risico op LMD met 42% 

kan verminderen. Echter, slechts 3,5% van de ouderen behaalde de geadviseerde minimale inname. 

Hoofdstuk 4.3 laat zien dat hogere waarden, die nog binnen de normale spreiding vallen, van 

vrije thyroxine geassocieerd zijn met een verhoogd risico op LMD en pigment veranderingen in de 

macula. Deze bevindingen suggereren een rol voor schildklierhormoon in de pathogenese van LMD. 

Hoofdstuk 4.4 toont aan dat in de BRAMD studie het gebruik van thrombocytenaggregatieremmers 

of anticoagulantia bij actieve choroïdale neovascularisaties, in het kader van LMD, geen negatieve 

invloed heeft op de visus, noch op retinale / subretinale bloedingen, laesiegrootte of retinale dikte. 

Uit deze studie kunnen we concluderen dat het doorgebruiken van deze medicatie bij patiënten met 

actieve choroïdale neovascularisaties in het kader van LMD, niet gecontra-indiceerd is.

Hoofdstuk 5 richt zich op genetische risicofactoren en gen-omgevingsinteracties geassocieerd met 

LMD. Hoofdstuk 5.1 geeft een samenvatting van de genetische achtergrond van LMD. Het grootste 

deel van het genetische risico van AMD kan verklaard worden door slechts twee genen, namelijk 

CFH en ARMS2. In Hoofdstuk 5.2 werden zeven nieuwe genetische varianten geïdentificeerd voor 

LMD met behulp van een grootschalige meta-analyse van genoomwijde associatie studies binnen 

het AMD Gene consortium. Deze varianten bevinden zich nabij de genen: COL8A1, IER3-DDR1, 

SLC16A8, TGFBR1, RAD51B, ADAMTS9 en B3GALTL. Deze genen zijn betrokken bij diverse processen, 

waaronder de complement cascade, lipide metabolisme, weefselstructuren en het vormen van 

nieuwe bloedvaten. Hoofdstuk 5.3 laat zien dat een hogere inname van luteïne en zeaxanthine 

en wekelijkse consumptie van vis het totale risico op LMD verlaagt voor personen met een hoog 

genetisch risico op basis van twee of meer risicovarianten in de belangrijke LMD genen (CFH, 

ARMS2). Dit onderzoek werd verricht in twee bevolkingsonderzoeken van het Three Continent AMD 

Consortium. Deze bevindingen zijn interessant voor counseling van individuele LMD patiënten.

In Hoofdstuk 6 bespreken we predictie en persoonlijke DNA testen. Hoofdstuk 6.1 onderzoekt de 

voorspellende waarde van verschillende predictiemodellen op basis van alle bekende risicofactoren. 

Dit is onderzocht in het ERGO onderzoek en gevalideerd in het Three Continent AMD Consortium. 

We vonden dat het volledige model, inclusief leeftijd, geslacht, 26 genetische risicovarianten, roken, 

‘body mass index’ en het LMD fenotype de beste voorspellende waarde had. Het predictiemodel 

kon met 87% zekerheid onderscheid maken tussen diegenen die wel een eindstadium LMD zullen 

ontwikkelen en diegenen die dat niet doen. In Hoofdstuk 6.2 hebben we persoonlijke DNA testen 

getest die beschikbaar waren op het internet. Hoewel de genotypering van hoge kwaliteit was, bleek 

dat deze testen niet geschikt waren voor klinische toepassingen, aangezien de risicovoorspellingen 

niet nauwkeurig genoeg waren. Daarnaast ontbraken omgevingsfactoren in de predictie modellen 

van de onderzochte testen; incorporatie hiervan zal de voorspelling ook verbeteren.
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Ten slotte geeft Hoofdstuk 7 een algemene interpretatie van deze belangrijkste bevindingen. Dit 

hoofdstuk beschrijft ook methodologische overwegingen, klinische implicaties en suggesties voor 

toekomstig onderzoek.

Concluderend, de beschreven studies in dit proefschrift hebben verschillende aspecten van LMD 

onderzocht. Wij hebben nieuwe genetische varianten en risico factoren geïdentificeerd die kunnen 

zorgen voor nieuwe inzichten in de complexe pathogenese van LMD en zullen leiden tot nieuwe 

richtlijnen voor behandelingen en/of maatregelen ter voorkoming van deze ziekte.
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PhD-period:  2010-2017
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PhD Training Year

Workload
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2nd annual meeting International AMD Genetics Consortium, Bethesda, USA (oral presentation) 2011 1.0

2nd ErasmusAge & SIGN-E Workshop Basic Principles of nutritional Epidemiology, Rotterdam 2012 0.3

ARVO-NED, Utrecht (oral presentation) 2011 1.0

2nd European Eye Epidemiology Workshop, Bordeaux, France (oral presentation) 2012 1.0

CHARGE investigators meeting 2013, Rotterdam 2013 0.3

International Course Genetics in Retinal Disease, Ghent, Belgium 2013 0.3

3rd European Eye Epidemiology Workshop, Bordeaux, France (oral presentation) 2013 1.0

Patient day Juvenile Macular degeneration, Nijmegen (oral presentation) 2013 1.0

Exome chip meeting International AMD Genetics Consortium, Miami, USA 2013 0.3

ARVO-NED, Utrecht 2013 0.3

Masterclass for clinical PhD students on Therapies for Inherited Retinal Dystrophies, Nijmegen 2014 0.3

Symposium on Novel Therapies for Inherited Retinal Dystrophies, Nijmegen 2014 0.3

2020 meeting of the department of Epidemiology, Erasmus MC, Rotterdam (oral presentation) 2014 1.0

4th European Eye Epidemiology Workshop, Rome, Italy (oral presentation) 2014 1.0

Exome chip meeting International AMD Genetics Consortium, Regensburg, Germany (oral 

presentation)

2014 1.0

Fundus autofluorescence workshop, Rotterdam 2014 0.3

5th European Eye Epidemiology Workshop, London, UK 2015 0.3
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PhD Training Year

Workload

(ECTS*)

National conferences

15th Molecular Medicine Day, Rotterdam 2010 0.3

NOG Annual Meeting 2011, Maastricht (oral presentation) 2011 1.0

NOG Annual Meeting 2012, Groningen (oral presentation) 2012 1.0

NOG Annual Meeting 2013, Groningen (oral presentation) 2013 1.0

2nd Dutch Ophthalmology PhD Day, Nijmegen (oral presentation) 2013 1.0

NOG Annual Meeting 2014, Maastricht (oral presentation) 2014 1.0

3rd Dutch Ophthalmology PhD Day, Nijmegen (oral presentation) 2014 1.0

NOG Annual Meeting 2015, Groningen (oral presentation) 2015 1.0

NOG Annual Meeting 2016, Maastricht (oral presentation) 2016 1.0

International conferences
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V. International Symposium of the German Ophthalmology Society (DOG), Baden-Baden, 2011 1.0
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Macula of Paris, 6th international conference on AMD, Paris, France (oral presentation) 2012 1.0
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Teaching
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Other
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Chair of AMD session, 6th Euretina Winter Meeting, Rotterdam 2016 0.1

Moderator AMD poster session, ARVO Annual Meeting 2016, Seattle, USA 2016 0.1

* 1 ECTS (European Credit Transfer System) equals a workload of 28 hours.
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